
SENG 403
Software Development in Teams and Organizations

Topic 5: Game Development - Paper Assignment

Thomas Condon, George Nikolov Dimitrov, Jessica Huynh, Lisa Jacobe, Gabriela Jurca, Riane Vardeleon, Constantine Vlahos
Department of Software Engineering

University of Calgary
Calgary, Canada

Abstract - In this paper we will be discussing the process of design
and development steps taken to create an interactive video game,
known as Game development, and comparing it to Software
engineering principles. The focus of the paper will be to go over
the differences in regards to requirements elicitation, design, and
testing. We will also touch on the creative interactions design
process, what it is, and how it fits into the game development
process. Lastly the commonly used frameworks for game
development will be discussed in the later parts of the paper.

Keywords—

I. INTRODUCTION (Heading 1)

Game development is the process of design and
development taken to create interactive games while Software
Engineering is the use of engineering principles in the design,
development and maintenance of software. For the purpose of
this paper we will be discussing Game development in respect
to videogames, the software related to their creation and
comparing the different Game development and Software
Engineering analogies. Though this does not limit the
methods and techniques used to develop video games to be
restricted solely to those that originated from the software
development industry.

II. REQUIREMENT ELICITATION

A. Background
Requirement Elicitation is more commonly known as

requirement gathering; it is an important step to finding out
what the stakeholders, customers and potential users want
from the system. Using good interpersonal communication
and collaboration with all the involved parties helps support
both the developers and the users, it makes it easier to
understand how the process works and helps to explain the
different methods and techniques used to gather the
requirements. Examples of a few of the mentioned techniques
and methods would be use cases, task analysis, scenarios,
questionnaires and task observation [Barry]

After gathering the requirements using one of the
listed or other methods, we then use requirement validation to
check for correctness. The client’s expectations, completeness

of all scenarios described, consistency (to avoid contradicting
requirements), clarity to ensure unambiguity, realism of
implementations, traceability of requirements and verifiability
through repeatable tests are all determined and proven/
disproven using requirement validation [Barry]. All of this is
to ensure the software meets the standards that are set by
either the company or the stakeholders.

Now that the standards are met we must also
consider the functional and nonfunctional requirements in the
development process. Functional requirements gives us the
ability to see what user tasks the system will be supporting,
such as being able to play in PvP (Player vs Player), vs.
AI (Player vs Computer), custom modes, or even being able
to use game money or real-world currency to buy equipment
and items in-game. Non-functional requirements are not
related to the functionality of the system, but are properties
and qualities of the system. This is seen in things such as
usability, reliability, performance, supportability, and
portability, just to name a few. Other types of non-functional
requirements include constraints or pseudo-requirements, like
implementation, interface, operation, packaging and legal
issues [Bruegge]

Other than the given examples of requirement
elicitation there exists other types of requirement elicitations,
such as greenfield engineering, re-engineering projects, and
interface engineering. Greenfield engineering does not require
any removal or remodelling of existing models in order to be
created, this is usually decided by user needs. Re-engineering
projects have the same purpose as greenfield but may also
extend functionality of the software and unlike greenfield is
requested by technology enablers. Re-engineered projects are
found in As-is scenarios, which is more current and based on
the users descriptions of the system. Interface engineering is
remodeling existing UI designs based on technology enablers
and the market needs. Both greenfield and re-engineering
projects can typically be found in visionary scenarios, which
is futuristic and cannot be done by users and developers alone
[Bruegge].

III. GAME DESIGN

A. Background

Game design is a process in a game’s development
that determines every aspect of how the game will function
[Rouse]. These aspects are the theory and practical necessities
of any game. Examples of such aspects are possible course of
action for users along with the results of said action,
information that needs to be relayed to the users, difficulty of
the game and the win or lose criteria. All the examples given
describe gameplay and mechanics, in which the importance of
the game design step is explained.

The game design process is described as being
player-centric, which is a design method centering around the
player [Brathwaite]. This means that designers focus on
entertaining the players and empathizing with them
[aarongdj.blogspot.ca]. Game designers end up spending most
of their time thinking about what users would like to see in a
game, and how they would like to interact with the game. The
main challenge for the designers however is how to make
their game interesting. One solution can be derived by
answering the question of what players want. Players want
games that are either challenging, provide an emotional
experience, are used to socialize, allow for bragging rights
and others or a combination of the above. Designers can
analyze these successful games and try to understand why
such a game was able to capture player's interests and
attention, while hopefully not just cloning the idea. Most
importantly though the game designer should also be able to
enjoy the game he is making and not just taking into
consideration what other players want.

B. Examples of Good Game Designs
A good game design leaves the players with a good

experience from playing a game. Good experiences can come
from good game design choices such as continuous challenge,
flexibility, immediate and useful rewards, and more [21].

The continuous challenge is the aspect of the game
that keeps the players interested on playing a game. This can
be achieved by setting clear, short-term goals appropriate to
the level of the player and the context within the game. Quests
are examples of this. Giving players quests to do fulfills the
continuous challenge aspect of the game. Quests can start as
easy at firsts and becomes harder upon completion, but not too
hard that it becomes inappropriate for the level of the player
and the context of the game.

The flexibility makes sure that players can choose
from a variety of ways to accomplish each goal. Adding
flexibility helps in making players interested in playing game
as they get to finish tasks in a way that they prefer more.
Players are not limited to what actions they can perform,
which makes the players more engage in the game as they can
exercise their problem solving skills to solve certain goals.
For example, being able to finish a quest through team or
individual efforts. This example shows two different ways to
accomplish certain goals within a game. Players can choose to

do the task alone or with other players. This way, players are
given the flexibility of the game where they can interact with
other players, if they choose to or not.

Another good game design choice is giving players
immediate and useful rewards. Instead of just points towards
victory, successful players can be rewarded with new
capabilities, a new part of the game world to explore or even a
new task. These are surprisingly motivating, as the point of the
game is not just to win it, but also to keep playing.

C. Examples of Bad Game Designs
Bad game design choices is the cause of unsuccessful

and poorly designed games that do not provide its players
good experiences of the game. These bad designs should be
avoided to avoid failures to a game. Some bad design choices
are games without maps, trial-and-error games, and games you
cannot pause.

First person shooter (FPS) games are the type of
games that needs a map. If there is no map, then it decreases
the gameplay experience for players. Games without maps
leaves the users confused on where they are in the course
of the gameplay. The maps provide valuable information
in games like FPS. The map is the guide for players on
what steps to take and gives them the navigation they need
throughout the gameplay.

Another bad game design choice are games that has
a time limit to accomplish certain tasks. These games are
the trial and error type of games, which are frustrating to the
players. This type of games requires a lot of dedicated time
and trials to accomplish certain set of tasks. Giving players
time limits to solve certain levels or quests add pressures to
the players. Sometimes, these types of games are not realistic,
which causes players to stop from playing a game.

Games that cannot be paused are also another
bad game design choices. Imagine yourself in a middle of
defeating a boss in a gameplay, then suddenly you needed to
take a break to take a trip to the washroom. This leads you to
the action of pausing the game. In games where there is no
pause functionality, players are forced to keep playing the
game till the very end.

IV. CREATIVE INTERACTIVE DESIGN

A. Background
Creative Interaction Design is a design process used

in the creation of interactive products. These products are
typically designed to facilitate communication and
interactions between people as well as interactions between
individuals and products. [Rogers, Jarvinen]. Interaction
designers are responsible for creating and maintaining
environments where the users interacting with the system can
gain a valuable and meaningful experience from it. The user
experience pertains to the overall impression people get

during the use of the system/product. How good or bad this
experience is is determined by every aspect of the product,
from the obvious details (i.e. how it works, etc) all the way
down to the more subtle details such as the shape of a tv
remote which can determine how comfortable it is. As Rogers
et al has said “it is important to point out that one cannot
design a user experience, only design for a user experience. In
particular, one cannot design a sensual experience, but only
create the design features that can evoke it.” This all points
toward the ultimate goal of interactions design, that being to
enhance positive user experiences, like enjoyment and how
well a user is engaged by it, all while reducing negative
experiences such as annoyance and frustration. In some cases
even negative experiences can help reinforce gameplay. One
such example would be Dark Souls, a game that was designed
to be as brutal as possible to the users, so that players feel a
sense of accomplishment when they finally succeed.

To further explain gameplay decisions we can
classify the different types of interactions. One such type is
social interactions. Games with this type of interaction tend to
provide a social experience in the gameplay and the end result
solely depends on the people involved. The game Cards
Against Humanity would be a good example of a social game.
In this game players select a card from their hand to complete
a phrase, the winner of the round is determined by the
personality of the player who initially read the incomplete
phrase. To keep the game balanced players anonymously play
response cards. The other type of interaction is one that
focuses on participation and execution of commands
[Christa], this one is more common for single player video
games, where players participate in gameplay to “beat” the
game using a chain of available commands. By deciding
which interaction model fits the game being designed,
designers can focus on how to make the game more enjoyable
for the intended audience.

B. Creative Interaction Design and Game Development
Interaction design is a crucial portion of the game

development process. This can be seen when you take a look
at the individual components. Interactions design is a very
human-centric design process, and as previously mentioned
game design itself is player-centric. Comparing this to video
games, which are defined as an interactive entertainment
media platforms, it goes to show the importance of the
interaction design process. Just as there is a difference
between designing and building a bridge, there is also a
difference between designing a game and engineering the
software behind it. As per Jarvinen et al, game design is a
subset of interaction design that has a focus on the facilitation
of play and games as particular entertainment systems
[Jarvinen]. Creative Interaction Design is a process that
follows iterative design procedures, where playtesting is
fundamentally important. Much like Software Engineering,
game development practices which invest in interaction
design, are iterative and have a strong emphasis on testing.

In general the interaction design process follows these steps:

1) Establishing system requirements.
2) Designing alternatives.
3) Prototyping.
4) Evaluation.

Each of these four steps is intended to provide a basis for
the next step and are supposed to be repeated in an iterative
manner [Rogers]. The measure of usability of an iteration
provides feedback that will be essential for future iterations.

Fig. # The iterative creative interaction design process

Creative Interaction Design has three main characteristics
[REF]:

1) Focus on users.
5) Has specific usability and user experience goals.
6) Iteration of the design process.

In Interaction Design the users or players are involved from
the beginning of the design process, where in the needs and
requirements for the system are identified, right up until
evaluation.[22] In establishing system requirements, particular
usability and user experience goals for the game are identified.
These are then used to evaluate the design later on in the
process. Designs are then refined through different iterations
as a response to user feedback.

V. TESTING

A. Background
Games are incredibly complex pieces of software

and like any software system debugging is a critical part of
the development process. Overlooked bugs that remain in
released software could needlessly waste system resources
and slow overall performance, while others could cause
bizarre graphical glitches, crash the game, or even corrupt
saved files on the consumer’s console or PC

B. Types of Games Testing
There are two principle types of Game Testing,

playtesting and quality assurance. Playtesting is intended to
make sure that the game is balanced and is interesting to play.
The objective of playtesting is not to find bugs, but to analyze
the behaviours, pacing, and overall feel of the game as well as
to measure it’s relative difficulty. This can be incredibly
subjective, making it difficult to define from a software
engineering perspective. Quality assurance on the other hand
primarily focuses on searching for software bugs, or game
breaking glitches.

Quality assurance often involves hiring teams of
game testers to go over any and all imaginable scenarios that
occur within the game, multiple times in most cases. The
main purpose of this is to manually find and document the
occurrences of any breaks or glitches within the game. An
example of one scenario would be walking/running a
character into every wall in a specific area of the game to
search for holes in the collision geometry, to find any
unintended exploits that would allow a player to cheat their
way through a game, or to find combination of items or
commands that can cause the game to crash. The problem
with this however is the sheer number of possible scenarios
that could exist within the game environment requires
incredibly thorough testing, and even then there is still a good
chance that bugs of varying severity will remain. In most
cases game developers find themselves releasing software
patches post-release once a missed bug is discovered by the
player base. This is also an effective but risky method to
finding bugs, because while it is cheaper than hiring testers,
game breaking bugs can turn people off from playing a game
even after it has been fixed due to the negative experience.

Fig. # This is a guard from Dragon Age. A graphical bug has prevented the
head geometry from loading.

VI. FRAMEWORKS

A. Background
A framework is a real or abstract structure which

serves as the support for building something useful [1].
Frameworks provide programmers with utility methods, as

well as application programming interfaces (API’s) with other
programs and resources. Additionally, they provide access to
a collection of code within a library that has been written in a
specific programming language like JavaScript. Overall,
frameworks are just the basic skeleton and still require a fair
bit of implementation from the users end. Having access to a
framework provides developers with a number of benefits,
one advantage is that the developer can reuse code which has
already been tested by other people in the programming
community. This decreases the development time and cost
and increases the reliability of the program. Another benefit is
the modularity of the code is increased, this is due to the
lower level tasks being handled by the framework.

In game development frameworks are heavily used
in the game industry, programming education, and for
personal projects. In game development specifically
frameworks are used as a set of functions that are loosely
created to handle tasks such as rendering, physics, audio, user
input, collision detection and so forth. Frameworks speed up
the game development process in such a way that developers
do not have to continually reinvent the wheel each time they
create a game.

Most often in game development, frameworks are
implemented in Game Engines, and then the game engine is
used to build games significantly more rapidly than by just
using a framework by itself [4]. A game engine is a set of
tools and scripts that contain more powerful logic in order to
perform more complex tasks and to manage the workflow of
the program [3]. However, the terms “framework” and “game
engine” are often used interchangeably in practice, we will be
using “framework” to refer to both unless otherwise stated.

B. Types of frameworks
In literature, two types of game development

frameworks have been described, and their uses are as follows
[Wu 2011]:

Fig. # A screen shot of Alice, a framework that is targeted for novice
developers.

1) Novice - Provides a visual interface for customizing
game templates, and not much programming is required

to create a game. The user is introduced to programming
concepts through visually manipulating objects.

2) Developer - These are toolkits that support development
of high quality 2D/3D rendering, special effects, physics,
animations, sounds playback and network communication in
languages such as C++, C# and Java.

C. Recommendations
Some aspects that can be considered for choosing a good
framework are given as follows [Wu 2011, 3]:

1) Features - Game development will be sped up if the
framework includes collision, physics and handles input.

2) Usability - For high usability, the framework should have
comprehensive documentation and an active community in
order to help answer questions.

3) Skill Level - Non-coders should consider a novice type
with a high-level API, with interactions like drag and drop.
Seasoned developers may want types with low-level access
where the source code of the framework is available.

4) Technical Aspects - The framework may be restricted to
particular environments. For example, the XNA framework
only runs on Windows.

5) Distribution - The ease of multi-platform distribution
should be considered.

D. Notable Examples
1) XNA Game Studio

This is a Microsoft technology developed back in
2006 and this was supposed to allow indie developers an
easy way to get into developing for the Xbox 360 [17].
Whether the developers were a studio or a 14 year old kid
at home, this brought an onslaught of new developers and
games to the market. This created a special market for
games made with the XNA framework on the Xbox
marketplace. The marketplace allows people to publish
their games without having to go through layers of
bureaucracy just to get their name out there for a small
fee. Unfortunately Microsoft has discontinued the use of
the XNA framework and it officially stopped supporting it
as of April 1st, 2014. Notable games that were created
using the XNA framework include Schizoid and Terraria.

Fig. # A screen shot of the start-up screen for creating an XNA project
through Microsoft Visual Studio [REF]

2) Unreal Engine
This widely used powerful game engine was

developed by Epic Games and was first seen in the game
titled Unreal in 1998 [18]. The engine is written in C++
and is currently on Unreal Engine 4. There is a
development kit that Epic Games has released called UDK
and this is a free version of Unreal Engine 3 for the
general public with slight fees related to it when your
product goes commercial. Some big names that use this
engine are Epic Games own Gears of War franchise, the
Borderlands and Bioshock franchise from 2K Games, and
Electronic Art’s Mass Effect franchise.

Fig. # A visual comparison of the graphics between Unreal Engine versions 1,
2 and 3 [23]

3) Unity 3D Engine

Fig. # A screen shot of the start-up screen for creating an XNA project
through Microsoft Visual Studio[24]

This engine was built to be an all-in-one game
development package, the engine comes with it’s own
integrated development environment (IDE) and was
originally started back in 2005 as a Mac OS X supported
game tool and now it is a multi-platform game engine [16]
with the exception of Linux. There are two versions
currently available, the free version and the Pro version
which adds many features and allows a one-button click to
deploy your application over a multitude of platforms.
Notable games that are run using this engine are Temple
Run, Slender: the Eight Pages and Game of Thrones:
Seven Kingdoms.

E. Applications
Usually when people think about frameworks they

think that the only use for them is to make games that
entertain the gaming enthusiasts. While for the most part this
is true, it is also used to create games which are mindless time
wasters like Flappy Bird where the point of the game is to tap
the screen to make your bird endlessly go through as many
pipes as possible. Some developers have put effort into
creating games that aid in research, are a source for military
recruitment, education, fitness and simulators meant to
simulate real life scenarios.

One example of a game developed for research
purposes is a game called Play To Cure: Genes in Space, this
game was developed by Cancer Research UK and it uses
players to analyze paths through what the game calls Element
Alpha [4]. Element Alpha is just a replacement of DNA
microarray data, DNA microarrays are a collection of DNA
spots that allow scientists to measure the expression levels of
a large number of genes simultaneously [20]. As a player you
create routes through these small maps trying to collect as
much Element Alpha as possible, these paths the players
create help scientists spot patterns in all the data they have
collected to showcase the DNA faults from the samples
collected. This helps in the process of looking for a new
cancer treatment.

Moving away from the science side of things there is
also another free game called America’s Army. This game
simulates US Military life, and is an FPS meant to get you
interested in military life and sign up for the US military.
Chris Chambers, former deputy director of development for
America’s Army admitted that this was a recruiting tool [19];
even on the game’s website they have links that take you to
the US Army’s website. This game starts off with the player
being a recruit and going about taking school tests at boot
camp, learning about different weapons, military vehicles, etc.
Later on players choose missions to play and cooperate with
others online in varying types of style. The game is made as
realistic as possible with medical kits, bleed outs, call outs
and weapons. This game’s primary goal is to get kids hooked
on the game so that when they get old enough they will want
to join the cadets and pursue a full time career in the military.

REFERENCES

[1] C. Barry, "Understanding the problems of Requirement Elicitation
Process: A Human Perspective. Information systems development challenges
in practice, theory, and education.," New York: Springer, vol. 1, pp. 210-214,
2009.

[2] B. Bruegge and A. H. Dutoit, Object-oriented software
engineering: using UML, patterns, and Java (2. ed), Upper Saddle River, NJ:
Pearson Prentice Hall, 2004.

[3] B. Wu and A. I. Wang, "Game Development Frameworks for SE
Education," in IGIC '11 Proceedings of the 2011 IEEE International
Games Innovation , Washington, DC, USA, 2011.

[4] "Play to Cure: Genes in Space," Cancer Research UK, [Online].
Available: http://www.cancerresearchuk.org/support-us/play-to-cure-genes-in-
space. [Accessed 24 February 2014]

[5] P. Jalote, "3," in A Concise Introduction To Software Engineering,
London, Springer, 2008, pp. 37-68.

[6] A. Järvinen, ÈGame design for social networks: Interaction Design
for Playful Dispositions. In ACM Proceedings of the 2009 ACM
SIGGRAPH Symposium on Video Games, 2008, pp. 95-102

[7] Sommerer, C. "Ubiquitous Gaming Interaction: Engaging Play
Anywhere." The art and science of interface and interaction design. Berlin:
Springer, 2008. 115-130.

[8] Rogers, Yvonne, J. Preece, and H. Sharp. "What is interaction
design?." Interaction design. 3rd ed. Hoboken, N.J.: Wiley, 2011. 1-18.

[9] R. Rouse. "Introduction." Game design theory & practice. 2nd ed.
Plano, Tex.: Wordware Pub., 2005. xx-18.

[10] A. DeChamplain, Game Development Journal - Blogspot [Online]
Available:http://aarongdj.blogspot.ca/2011/01/player-centric-design-
assignment.html

[11] Brathwaite, Brenda, and Ian Schreiber. Challenges for game
designers. Boston, Mass.: Charles River Media, a part of Course Technology,
2009.

[12] M. Rouse, "framework," WhatIs, September 2005. [Online].
Available:
http://whatis.techtarget.com/definition/framework. [Accessed 23 February
2014].

http://aarongdj.blogspot.ca/
http://aarongdj.blogspot.ca/
http://aarongdj.blogspot.ca/2011/01/player-centric-design-assignment.html
http://aarongdj.blogspot.ca/2011/01/player-centric-design-assignment.html
http://whatis.techtarget.com/definition/framework

[13] "Framework," DocForge, [Online]. Available: http://docforge.com/
wiki/
Framework. [Accessed 23 February 2014].

[14] J. Freeman, "How To Make A Game Part 1: Picking a
Framework," [Online]. Available: http://jessefreeman.com/game-dev/getting-
started-
making-games-part-1-picking-framework/. [Accessed 23 February 2014].

[15] J. Voss, "Unity vs. XNA (Engine vs. Framework)," Pixelsoft
Games, 20
February 2014. [Online]. Available: http://pixelsoftgames.com/?p=45.
[Accessed 23 February 2014].

[16] Unity Technologies, Unity - Game Engine [Online] Available:
http://unity3d.com/

[17] Various Authors, Microsoft XNA - Wikipedia, the free
encyclopedia [Online] Available: http://en.wikipedia.org/wiki/
Microsoft_XNA#XNA_Game_Studio_Express

[18] Various Authors, Unreal Engine - Wikipedia, the free
encyclopedia [Online] Available: http://en.wikipedia.org/wiki/Unreal_Engine

[19] Various Authors, America's Army - Wikipedia, the free
encyclopedia[Online] Available: http://en.wikipedia.org/wiki/
America's_Army

[20] Various Authors, DNA microarray - Wikipedia, the free
encyclopedia[Online] Available: http://en.wikipedia.org/wiki/
DNA_microarray

[21] Various Authors, What makes a good game? - Starting point
[Online] Available: http://serc.carleton.edu/introgeo/games/goodgame.html

[22] Various Authors, The Process of Interaction Design - QuickBooks
DocStoc [Online] Available: http://www.docstoc.com/docs/48379744/The-
Process-of-Interaction-Design

[23] Torinir. (2006, September 14). "Unreal_Engine_Comparision.jpg,"
in Wikipedia, the free encyclopedia [Online] Available: http://
upload.wikimedia.org/wikipedia/en/thumb/8/81/
Unreal_Engine_Comparison.jpg/1280px-Unreal_Engine_Comparison.jpg

[24] Unknown. (2011, February 22).
“5991_luxology_modo_501_unity_3.2_export_screenshot_game_engi
ne_lg.jpg” [Online] Available: http://www.creativeobserver.com/img/
5991_luxology_modo_501_unity_3.2_export_screenshot_game_engine_lg.jp
g

http://docforge.com/wiki/
http://docforge.com/wiki/
http://jessefreeman.com/game-dev/getting-started
http://jessefreeman.com/game-dev/getting-started
http://pixelsoftgames.com/?p=45
http://unity3d.com/
http://unity3d.com/
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Unreal_Engine
http://en.wikipedia.org/wiki/America's_Army
http://en.wikipedia.org/wiki/America's_Army
http://en.wikipedia.org/wiki/DNA_microarray
http://en.wikipedia.org/wiki/DNA_microarray
http://serc.carleton.edu/introgeo/games/goodgame.html
http://upload.wikimedia.org/wikipedia/en/thumb/8/81/Unreal_Engine_Comparison.jpg/1280px-Unreal_Engine_Comparison.jpg
http://www.docstoc.com/docs/48379744/The-Process-of-Interaction-Design
http://www.docstoc.com/docs/48379744/The-Process-of-Interaction-Design
http://upload.wikimedia.org/wikipedia/en/thumb/8/81/Unreal_Engine_Comparison.jpg/1280px-Unreal_Engine_Comparison.jpg
http://upload.wikimedia.org/wikipedia/en/thumb/8/81/Unreal_Engine_Comparison.jpg/1280px-Unreal_Engine_Comparison.jpg
http://www.creativeobserver.com/img/5991_luxology_modo_501_unity_3.2_export_screenshot_game_engine_lg.jpg
http://www.creativeobserver.com/img/5991_luxology_modo_501_unity_3.2_export_screenshot_game_engine_lg.jpg
http://www.creativeobserver.com/img/5991_luxology_modo_501_unity_3.2_export_screenshot_game_engine_lg.jpg

