
02/23/2010 CPSC 449

Computer
Science

Unless otherwise noted, all artwork and illustrations by either Rob Kremer or Jörg Denzinger (course instructors)

Haskell
I/O

82

λ
2015/01/05 CPSC 449

In- and Output
■Conceptually, functional languages have a problem with

input and output, since reading in data is not well
modelled using functions and output is usually only a
side-effect of functions (and, as such, outside of the
usual semantic treatment of function evaluation by
reductions)
■Some functional languages do not care about this and

simply add to their functional part a rather standard IO
part (usually copied from an imperative language)
■Other languages try to stay within the functional ideas

as much as possible (which usually can become rather
confusing, see Haskell)

83

2015/01/05 CPSC 449

Haskell: the monadic classes
■The monad construct was introduced in category theory,

a rather theoretic field
■Haskell has three type classes that are based on the

monad principle: Functor, Monad and MonadPlus
■The list type class and the IO type classes are

examples of subclasses of the monadic classes
■Functor requires the function fmap, Monad requires
>>, >>= (bind) and return, and MonadPlus extends
Monad by requiring a zero element mzero (as a
constant function) and mplus
■The IO type class is not a subclass of MonadPlus

84 2015/01/05 CPSC 449

Haskell: the monadic classes

■Monads are similar to abstract data types since they
require each subclass/instantiation of them to obey
certain laws (i.e. there are certain equations
between expressions that we expect to be fulfilled)
■The Monad class essentially defines around "normal

functions" an environment that is (or can be)
changed when these functions are performed (i.e.
we convert side effects into valid function results in
the extended "world")
■This naturally allows for a (theoretically) better

treatment of IO (as actions in the outside world).

85

2015/01/05 CPSC 449

IO in Haskell

■For the basic data types Char and String
([Char]), Haskell has a corresponding IO type that
represents values of the basic type with the added
"world environment"
■ If we are only interested in the effects on the

environment (i.e. if we write out data) then we assign
to the function as result type IO () (the IO data type
corresponding to the unit type)
■To produce sequences of actions, we can either use

the monad functions >> and >>=, or we can use the
do construct

86 2015/01/05 CPSC 449

IO in Haskell

■For reading and writing a character, we use the
built-in functions getChar and putChar
■For other data types, the type classes Show and
Read force the existence of functions that convert
values of the types into characters or strings, resp.
functions that convert characters or strings into
values of the other types: 
show (2+5) returns "7"  
read “True” ::Bool returns True  

87

In this case, you need to specify the type
in order to tell Haskell what to look for.

2015/01/05 CPSC 449

IO in Haskell

■The following little program reads in one character
and then prints it out: 
main :: IO ()  
main = do c <- getChar 
 putChar c
■Note that do allows for the sequence of actions and

that c acts here very much like a variable in an
imperative or object-oriented language (but you
can’t re-assign it)

88 2015/01/05 CPSC 449

File handling

■putChar and getChar write to stdout and read from
stdin (which Haskell calls channels, in modern operating
systems we call this streams)
■Other channels and files can be used by creating

handles for them. A handle requires a file path and an
IOmode and can then be used by several functions to
read or write from the file associated with it
■The handle variants of putChar and getChar are
hPutChar and hGetChar (with a handle as first
argument)
■There are quite a few additional functions available

(many in the IO library), to read/write lines or whole files

89

2015/01/05 CPSC 449

IO exception handling

■While for normal functions it might be acceptable to
let the run-time system terminate with an error when
they produce an error, there are a lot of "normal"
error conditions associated with IO (like end-of-file)
■Therefore Haskell introduced special IO related

errors (via a special data type IOError) and
exception handling via exception handlers (that
convert values from IOError to the normal IO a
values)
■Central to this is the function catch: 
catch :: IO a -> (IOError -> IO a) -> IO a

90 2015/01/05 CPSC 449

IO exception handling
■Example (see "Gentle Introduction”): 

import Haskell.X.Prelude (catch,IOException)
getLineWErr :: IO String
getLineWErr = catch gL (\err -> return ("Error: " ++
 show (err :: IOException)))
 where
 gL = do c <- getChar
 if c == '\n'
 then return ""
 else do l <- getLineWErr
 return (c:l)

91

catch recently moved out of Prelude

need to disambiguate the type of err

recursion

