
Iverson Exam 2015

Computer 
Science

Iverson Exam 
2015

Rob Kremer

1

http://www.ucalgary.ca/


Iverson Exam 2015

Background
• Spearheaded by U of A 

• 4 Questions 
- “Continents” (computations on a grid) - a,b,c,d, 10 pts 
- “Divisibility Testing” (FSM) - a,b,c,d, 10 pts 
- “Pebble Game” (permutations) - a,b,c,d, 10 pts 
- “Fractions” (loops, basic math) - 1 part, 3 pts 

• VERY hard this year  

• Calgary Average: 14.6/33;  Median:14.5;  High mark:24

2

http://www.ucalgary.ca/


Iverson Exam 2015

Participation/Breakdown (Calgary)

3

Avg(33) Q1(10) Q2(10) Q3(10) Q4(3) Count

All 14.6 7.0 4.3 2.5 0.8 35

All	  (Median) 14.5 7.0 5.0 2.0 0.0 35

Lord	  Beaverbrook	  High	  School	   11.9 5.9 3.4 2.4 0.2 5

Sir	  Winston	  Churchill	  High	  School 17.3 8.2 4.7 3.7 1.0 6

Western	  Canada	  High	  School 13.3 6.1 4.4 2.2 0.7 17

William	  Aberhart	  High	  School 16.0 8.8 3.8 1.8 1.8 4

Bishop	  Grandin	  High	  School 1

Ernest	  Manning	  High	  School 1

John	  G.	  Diefenbaker	  High	  School 1

http://www.ucalgary.ca/


Iverson Exam 2015

Awards

4

Firstname Lastname Grade Name	  of	  High	  School Total Q1 Q2 Q3 Q4 Rank	  
Total

David	   Ng grade_12 Sir	  Winston	  Churchill	  High	  School 24 8.5 6.5 6 3 1

Grant Spink grade_11 Ernest	  Manning	  High	  School 22 10 7 2 3 2

Duncan Lo grade_12 Sir	  Winston	  Churchill	  High	  School 21 10 5 6 3

Anthony Tang grade_12 Western	  Canada	  High	  School 21 10 7 4 0 3

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1: Continents
Pixel-world is a peculiar planet. It is a flat world that is divided into a grid of square cells. 
Each cells is completely covered by land or completely covered by water. Example: in the 
grid below, the dark cells represent land and the light cells represent water. 

A continent is a collection of land cells, say C, such that
• it is possible to walk between any two cells in C by taking horizontal or vertical steps (no 

diagonal steps) and never entering a water cell.
• every land cell that can be reached in this way from a land cell in C is also in C. 
The size of the continent C is the number of cells in C. Example: the grid shown above has 
4 continents, with sizes 1, 4, 4, 24. 

5

Iverson exam 2015 3

question 1: continents

Pixel-world is a peculiar planet. It is a flat world that is divided into a grid of square cells.
Each cells is completely covered by land or completely covered by water. Example: in the grid
below, the dark cells represent land and the light cells represent water.

A continent is a collection of land cells, say C, such that

• it is possible to walk between any two cells in C by taking horizontal or vertical steps (no
diagonal steps) and never entering a water cell.

• every land cell that can be reached in this way from a land cell in C is also in C.

The size of the continent C is the number of cells in C. Example: the grid shown above has 4
continents, with sizes 1, 4, 4, 24.

a) [2 marks] Give the number of continents in the following grid.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 a)

[2 marks] Give the number of continents in the following grid. 

6

Iverson exam 2015 3

question 1: continents

Pixel-world is a peculiar planet. It is a flat world that is divided into a grid of square cells.
Each cells is completely covered by land or completely covered by water. Example: in the grid
below, the dark cells represent land and the light cells represent water.

A continent is a collection of land cells, say C, such that

• it is possible to walk between any two cells in C by taking horizontal or vertical steps (no
diagonal steps) and never entering a water cell.

• every land cell that can be reached in this way from a land cell in C is also in C.

The size of the continent C is the number of cells in C. Example: the grid shown above has 4
continents, with sizes 1, 4, 4, 24.

a) [2 marks] Give the number of continents in the following grid.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 a) (Solution)
[2 marks] Give the number of continents in the following grid. 

7

Iverson exam 2015 3

question 1: continents

Pixel-world is a peculiar planet. It is a flat world that is divided into a grid of square cells.
Each cells is completely covered by land or completely covered by water. Example: in the grid
below, the dark cells represent land and the light cells represent water.

A continent is a collection of land cells, say C, such that

• it is possible to walk between any two cells in C by taking horizontal or vertical steps (no
diagonal steps) and never entering a water cell.

• every land cell that can be reached in this way from a land cell in C is also in C.

The size of the continent C is the number of cells in C. Example: the grid shown above has 4
continents, with sizes 1, 4, 4, 24.

a) [2 marks] Give the number of continents in the following grid.

9

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 b)
[2 marks] Suppose, for each land cell, we already know the size of the continent 
that includes that cell. These sizes are stored in an array and the array is sorted. 
Example: 1, 1, 1, 2, 2 is the sorted list of these sizes for the following grid. The size 
2 appears twice because it is entered into the array once for each land cell in the 
continent. 

                               
The list below was obtained in this way from a grid with 30 land cells. How many 
continents does this grid have? Explain briefly. 
                 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
                  3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

8

Iverson exam 2015 4

b) [2 marks] Suppose, for each land cell, we already know the size of the continent that includes
that cell. These sizes are stored in an array and the array is sorted.

Example: 1, 1, 1, 2, 2 is the sorted list of these sizes for the following grid. The size 2

appears twice because it is entered into the array once for each land cell in the continent.

The list below was obtained in this way from a grid with 30 land cells. How many continents
does this grid have? Explain briefly.

1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

c) [3 marks] Write a function count continents(sizes, n) where sizes is a sorted array of
n integers, obtained from a grid with n land cells. The function should return the number of
continents in the grid.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 a) (Solution)

A continent of size k will be reported k times in 
the list. For i ≥ 1, if we let ai denote the 
number of times i appears in the list then the 
answer is 
   a1/1 + a2/2 + a3/3 + ...
In this case, the number of continents is 
   2/1 + 4/2 + 12/3 + 12/4 = 11 
          1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
          3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

9

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 c)

[3 marks] Write a function 
count_continents(sizes, n) 
where sizes is a sorted array of n 
integers, obtained from a grid with n land 
cells. The function should return the 
number of continents in the grid. 

10

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 c) (Solution 1) 
Here is a Python implementation that follows the 
formula from the previous part. 
def count_continents(sizes, n+1): 
    tot = 0 
    for i in range(1,n): 
        tot += sizes.count(i)//i 
return tot 

 

11

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 c) (Solution 1) 
Here is a Python implementation that follows the 
formula from the previous part. 
def count_continents(sizes, n+1): 
    tot = 0 
    for i in range(1,n): 
        tot += sizes.count(i)//i 
return tot 

 

12

Does a complete walk of the array.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 c) (Solution 2) 
The previous solution is a bit slow for large inputs because the 
count() method will scan sizes every iteration of the loop. The 
following is faster because it only walks through the list once. It 
takes advantage of the fact that all occurrences of a number will 
appear consecutively (because the list is sorted). 
def count_continents(sizes, n): 
    prev = 0 
    tot = 0  
    for j in range(1,n): 
        if sizes[j] != sizes[prev]: 
            tot += (j-prev)//sizes[prev] 
            prev = j 
    tot += (n-prev)//sizes[prev] 
    return tot

13

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 c) (Solution 2) 
An even more efficient version that doesn’t even visit every 
indici: 
def count_continents(sizes, n): 
    i = 0 
    tot = 0  

    while i<n: 
        tot += 1 
        i += sizes[i] 
    return tot 

  1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3

14

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 d)

[3 marks] We represent a grid by specifying two positive 
integers, rows and columns — indicating the grid size — 
together with a two-dimensional array grid. For 1 ≤ r ≤ 
rows and 1 ≤ c ≤ columns, grid[r][c] is 0 if the 
cell at location (r, c) is water, and is 1 if that cell is land. 

Write a function continent_size(r, c, rows, 
columns, grid) that returns the size of the continent that 
includes the cell at location (r, c). If this is a water cell, 
return 0. You may assume that every cell on the boundary of 
the grid is water.  

15

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 d) (Solution 1)
Mark off the cells in the continent one at a time. 
Initially, mark the cell at coordinate (r,c). While 
there is marked land cell that is adjacent to an 
unmarked land cell, then mark that unmarked cell. 
When there are no more cells to mark, return the 
number of marked cells. 

16

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 d) (Solution 1)
#return the list of the four cells adjacent to cell (r, c) 
def neighbours(r, c): 
    return [(r-1, c), (r+1, c), (r, c-1), (r, c+1)] 
def continent_size(r, c, rows, columns, grid): 
    if grid[r][c] == 0: 
        return 0  
    #create a grid of 0s 
    marked = [[0]*columns]*rows 
    marked[r-1][c-1] = 1 
    count = 1  
    while true: 
        found = false 
        for cr in range(rows): 
            for cc in range(columns): 
                if marked[cr][cc]: 
                    #examine the neighbours of the marked cell 
                    for (nr, nc) in neighbours(cr, cc): 
                        #mark the neighbour if is is an unmarked land cell 
                        if not marked[nr][nc] and grid[nr][nc]: 
                            marked[nr][nc] = 1 
                            count += 1 
                            found = true 
        if not found: 
            # the entire continent must be marked if we reach here 
            return count 

17

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 d) (Solution 2)
The previous solution could be made more efficient. 
Notice that we only have to examine the neighbours of a 
marked cell once. 
The following Python code exploits this fact. It 
maintains a list to examine that contains the cells that 
have been marked but have not yet had their 
neighbouring cells checked. It removes one cell from 
this list at a time and checks the neighbours of that cell. 
If any neighbour is a land cell that is not yet marked, it is 
marked and then added to the list. This way, every cell 
the continent has its neighbours checked exactly once. 

18

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 d) (Solution 2)
#return the list of the four cells adjacent to cell (r, c) 
def neighbours(r, c): 
    return [(r-1, c), (r+1, c), (r, c-1), (r, c+1)] 
def continent_size(r, c, rows, columns, grid): 
    if grid[r][c] == 0: 
        return 0  
    #create a grid filled with 0s 
    marked = [[0]*columns]*rows 
    marked[r-1][c-1] = 1 
    #the list of cells that have been marked 
    to_examine = [(r-1, c-1)] 
    #the number of cells in the continent we have marked so far 
    count = 1 
    while len(to_examine) > 0: 
        #remove something from the list of unprocessed tiles 
        (cr, cc) = to_examine.pop() 
        #examine the neighbours of this cell 
        for (nr, nc) in neighbours(cr, cc): 
            #if the neighbouring tile is an unmarked land tile 
            #then mark it and add it to the list of tiles to process 
            if marked[nr][nc] == 0 and grid[nr][nc] == 1: 
                marked[nr][nc] = 1 
                count += 1 
                to_examine.append((nr, nc)) 
return count 

19

http://www.ucalgary.ca/


Iverson Exam 2015

Question 1 d) (Solution 3)
A very time- and heap- efficient and compact solution. 
Drawback: destroys the argument grid and is recursive (not 
so stack-efficient).

def cs3(r,c,rows,columns,grid): 
  if grid[r][c]==0: 
    return 0 
  grid[r][c] = 0 
  return 1 +\ 
         cs3(r+1,c,rows,columns,grid) +\ 
         cs3(r-1,c,rows,columns,grid) +\ 
         cs3(r,c+1,rows,columns,grid) +\ 
         cs3(r,c-1,rows,columns,grid)

20

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2: Divisibility Testing
In this question, we describe numbers in both decimal and binary form. A decimal number is 
subscripted with 10; a binary number is subscripted with 2. Example: 510 = 1012. 
You might know some divisibility tests for decimal numbers. Example: a number is divisible 
by 3 if and only if the sum of its decimal digits is divisible by 3. This rule does not hold for 
binary digits: 310 = 112 but the sum of its binary digits is 210. 
We will use finite state machines (FSMs) for our tests. A FSM is a computational device that 
reads in a string of bits (0 or 1) and decides whether to accept that string. It has these features: 
• states, which are depicted as labelled circles (a, b, c in the example below); 
• for each state x, there are precisely two arcs that start at x and point to some other state 

(perhaps x again); one arc is labelled 0 and the other 1; 
• one state is the start state and one is the accepting state; the start state has an arrow pointing 

to it labelled start; the accepting state has a thick border; the start and accepting states can 
be the same. 

A computation with a FSM is simple to describe. A “current state” v is maintained which is 
initialized to be the start state. The input string is read one bit at a time, from left to right. 
When a bit b is read, the current state v is updated to be the state that is pointed to from v by 
the arc labelled b. 

21

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2: Divisibility Testing

22

“one or more”

In this question, we describe numbers in both decimal and binary form. A decimal number is 
subscripted with 10; a binary number is subscripted with 2. Example: 510 = 1012. 
You might know some divisibility tests for decimal numbers. Example: a number is divisible 
by 3 if and only if the sum of its decimal digits is divisible by 3. This rule does not hold for 
binary digits: 310 = 112 but the sum of its binary digits is 210. 
We will use finite state machines (FSMs) for our tests. A FSM is a computational device that 
reads in a string of bits (0 or 1) and decides whether to accept that string. It has these features: 
• states, which are depicted as labelled circles (a, b, c in the example below); 
• for each state x, there are precisely two arcs that start at x and point to some other state 

(perhaps x again); one arc is labelled 0 and the other 1; 
• one state is the start state and one is the accepting state; the start state has an arrow pointing 

to it labelled start; the accepting state has a thick border; the start and accepting states can 
be the same. 

A computation with a FSM is simple to describe. A “current state” v is maintained which is 
initialized to be the start state. The input string is read one bit at a time, from left to right. 
When a bit b is read, the current state v is updated to be the state that is pointed to from v by 
the arc labelled b. 

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2: Divisibility Testing
Once the entire input is processed, the FSM accepts the string if v is the accepting state, otherwise 
it rejects the string. We assume that the input string has at least one bit.

      

Figure 1: A finite state machine that accepts binary numbers divisible by 3. Here, a is both the start 
state and the accepting state. 
Given a FSM, we can illustrate a computation by writing the sequence of states assumed by v, 
connecting consecutive labels with an arrow that labelled by the associated input bit. Example: for 
the FSM above, here is the computation for input string 110: 
a −1→ b −1→ a −0→ a 
and here is the computation for input string 100: 
a −1→ b −0→ c −0→ b 
String 110 is accepted because the final state is the accepting state, but string 100 is rejected. In 
fact, this FSM accepts precisely the binary numbers that are divisible by 3

10 = 11
2
. Notice that both 

011 and 00 are accepted; leading 0s are allowed. 

23

Iverson exam 2015 8

question 2: divisibility testing

In this question, we describe numbers in both decimal and binary form. A decimal number is
subscripted with 10; a binary number is subscripted with 2. Example: 510 = 1012.

You might know some divisibility tests for decimal numbers. Example: a number is divisible
by 3 if and only if the sum of its decimal digits is divisible by 3. This rule does not hold for
binary digits: 310 = 112 but the sum of its binary digits is 210.
We will use finite state machines (FSMs) for our tests. A FSM is a computational device that

reads in a string of bits (0 or 1) and decides whether to accept that string. It has these features:

• states, which are depicted as labelled circles (a, b, c in the example below);

• for each state x, there are precisely two arcs that start at x and point to some other state
(perhaps x again); one arc is labelled 0 and the other 1;

• one state is the start state and one is the accepting state; the start state has an arrow
pointing to it labelled start; the accepting state has a thick border; the start and accepting
states can be the same.

A computation with a FSM is simple to describe. A “current state” v is maintained which is
initialized to be the start state. The input string is read one bit at a time, from left to right.
When a bit b is read, the current state v is updated to be the state that is pointed to from v
by the arc labelled b.
Once the entire input is processed, the FSM accepts the string if v is the accepting state,

otherwise it rejects the string. We assume that the input string has at least one bit.

a b c

0

0

0

1

1

1

start

Figure 1: A finite state machine that accepts binary numbers divisible by 3. Here, a is both the
start state and the accepting state.

Given a FSM, we can illustrate a computation by writing the sequence of states assumed by v,
connecting consecutive labels with an arrow that labelled by the associated input bit. Example:
for the FSM above, here is the computation for input string 110:

a

1�! b

1�! a

0�! a

and here is the computation for input string 100:

a

1�! b

0�! c

0�! b

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 a)

[2 marks] Illustrate the computation of the above FSM for (i) 
input string 1010010 and (ii) input string 1011010. For each 
string, state whether it is accepted. 

24

Iverson exam 2015 8

question 2: divisibility testing

In this question, we describe numbers in both decimal and binary form. A decimal number is
subscripted with 10; a binary number is subscripted with 2. Example: 510 = 1012.

You might know some divisibility tests for decimal numbers. Example: a number is divisible
by 3 if and only if the sum of its decimal digits is divisible by 3. This rule does not hold for
binary digits: 310 = 112 but the sum of its binary digits is 210.
We will use finite state machines (FSMs) for our tests. A FSM is a computational device that

reads in a string of bits (0 or 1) and decides whether to accept that string. It has these features:

• states, which are depicted as labelled circles (a, b, c in the example below);

• for each state x, there are precisely two arcs that start at x and point to some other state
(perhaps x again); one arc is labelled 0 and the other 1;

• one state is the start state and one is the accepting state; the start state has an arrow
pointing to it labelled start; the accepting state has a thick border; the start and accepting
states can be the same.

A computation with a FSM is simple to describe. A “current state” v is maintained which is
initialized to be the start state. The input string is read one bit at a time, from left to right.
When a bit b is read, the current state v is updated to be the state that is pointed to from v
by the arc labelled b.
Once the entire input is processed, the FSM accepts the string if v is the accepting state,

otherwise it rejects the string. We assume that the input string has at least one bit.

a b c

0

0

0

1

1

1

start

Figure 1: A finite state machine that accepts binary numbers divisible by 3. Here, a is both the
start state and the accepting state.

Given a FSM, we can illustrate a computation by writing the sequence of states assumed by v,
connecting consecutive labels with an arrow that labelled by the associated input bit. Example:
for the FSM above, here is the computation for input string 110:

a

1�! b

1�! a

0�! a

and here is the computation for input string 100:

a

1�! b

0�! c

0�! b

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 a) (Solution)

     a −1→ b −0→ c −1→ c −0→ b −0→ c −1→ c −0→ b  
The string 1010010 is rejected. Note: 10100102 = 8210 which is not 
divisible by 3. 
     a −1→ b −0→ c −1→ c −1→ c −0→ b −1→ a −0→ a  
The string 1011010 is accepted. Note: 10110102 = 9010 which is 
divisible by 3. 

25

Iverson exam 2015 8

question 2: divisibility testing

In this question, we describe numbers in both decimal and binary form. A decimal number is
subscripted with 10; a binary number is subscripted with 2. Example: 510 = 1012.

You might know some divisibility tests for decimal numbers. Example: a number is divisible
by 3 if and only if the sum of its decimal digits is divisible by 3. This rule does not hold for
binary digits: 310 = 112 but the sum of its binary digits is 210.
We will use finite state machines (FSMs) for our tests. A FSM is a computational device that

reads in a string of bits (0 or 1) and decides whether to accept that string. It has these features:

• states, which are depicted as labelled circles (a, b, c in the example below);

• for each state x, there are precisely two arcs that start at x and point to some other state
(perhaps x again); one arc is labelled 0 and the other 1;

• one state is the start state and one is the accepting state; the start state has an arrow
pointing to it labelled start; the accepting state has a thick border; the start and accepting
states can be the same.

A computation with a FSM is simple to describe. A “current state” v is maintained which is
initialized to be the start state. The input string is read one bit at a time, from left to right.
When a bit b is read, the current state v is updated to be the state that is pointed to from v
by the arc labelled b.
Once the entire input is processed, the FSM accepts the string if v is the accepting state,

otherwise it rejects the string. We assume that the input string has at least one bit.

a b c

0

0

0

1

1

1

start

Figure 1: A finite state machine that accepts binary numbers divisible by 3. Here, a is both the
start state and the accepting state.

Given a FSM, we can illustrate a computation by writing the sequence of states assumed by v,
connecting consecutive labels with an arrow that labelled by the associated input bit. Example:
for the FSM above, here is the computation for input string 110:

a

1�! b

1�! a

0�! a

and here is the computation for input string 100:

a

1�! b

0�! c

0�! b

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 b)

[2 marks] Draw a FSM that accepts precisely 
the binary numbers that are divisible by 210 
(leading zeros are allowed).  

26

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 b) (Solution)

Even numbers are precisely those whose binary 
representation ends in a 0. 

27

Iverson exam 2015 9

String 110 is accepted because the final state is the accepting state, but string 100 is rejected.
In fact, this FSM accepts precisely the binary numbers that are divisible by 310 = 112. Notice
that both 011 and 00 are accepted; leading 0s are allowed.

a) [2 marks] Illustrate the computation of the above FSM for (i) input string 1010010 and (ii)
input string 1011010. For each string, state whether it is accepted.

Solution:

a

1�! b

0�! c

1�! c

0�! b

0�! c

1�! c

0�! b

The string 1010010 is rejected. Note: 10100102 = 8210 which is not divisible by 3.

a

1�! b

0�! c

1�! c

1�! c

0�! b

1�! a

0�! a

The string 1011010 is rejected. Note: 10110102 = 9010 which is divisible by 3.

b) [2 marks] Draw a FSM that accepts precisely the binary numbers that are divisible by 210
(leading zeros are allowed).

Solution: Even numbers are precisely those whose binary representation ends in a 0.

a b

0

1

0

start

1

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 c)

[3 marks] Draw a FSM that accepts precisely 
the binary numbers that are divisible by 510 
(leading zeros are allowed). 

28

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 c) (Solution)
Consider how the binary number changes as the bits are read in. If a 0 is read then 
the number is multiplied by 2. If a 1 is read then the number is multiplied by 2 and 
increased by 1. Example: 101 represents 5 and 1011 represents 2·5 + 1 = 11. 
The states of the FSM will keep track of the value mod 5 of the binary number read 
so far and the arcs model how this value changes as the bits are read. Example: 
consider a binary number that is 3 mod 5. Suppose 1 is then appended to the 
number. The value mod 5 of the new number then becomes 2·3 + 1 ≡ 2. 

29

x%5=0 x%5=1 x%5=2 x%5=3 x%5=4

0

1 0
1

01

0

1 0

1

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 c) (Solution)

30

x%5=0 x%5=0 x%5=0 x%5=3 x%5=4

We only need to worry about the “mod 5’s” of the 
number x.  Therefore we only need 5 nodes: one for 

each possible modular number.

The “mod 0” one is our only accept 
state (0 is divisible by 5).

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 c) (Solution)

31

x%5=0 x%5=1 x%5=2 x%5=3 x%5=4

0

Appending a zero doubles the number.  
If x was already divisible by 5 then 

doubling it will still be divisible by 5.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 c) (Solution)

32

x%5=0 x%5=1 x%5=2 x%5=3 x%5=4

0

1

Appending a one doubles the number 
and adds 1.  If x was already divisible 
by 5 then doubling and adding 1 will 

make it x%5=1.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 c) (Solution)

33

x%5=0 x%5=1 x%5=2 x%5=3 x%5=4

0

1 0

1

Double a mod-1 will 
make a mod-2

Double and increment a 
mod-1 will make a mod-3

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 c) (Solution)

34

x%5=0 x%5=1 x%5=2 x%5=3 x%5=4

0

1 0

1

01

Double a mod-2 will 
make a mod-4

Double and increment a mod-2 
will make a mod-5, i.e.: mod-0

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 c) (Solution)

35

x%5=0 x%5=1 x%5=2 x%5=3 x%5=4

0

1 0

1

01

1

0

Double and increment a mod-3 will 
make a mod-7, i.e. mod-2

Double a mod-3 will make a 
mod-6, i.e. mod-1

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 c) (Solution)

36

x%5=0 x%5=1 x%5=2 x%5=3 x%5=4

0

1 0

1

01

1

0

1

Double and increment a mod-4 will 
make a mod-9, i.e. mod-4

Double a mod-4 will make 
a mod-8, i.e. mod-3

0

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 d)

[3 marks] Draw a FSM from the description 
that accepts precisely binary numbers that are 
divisible by 310 and either are the number zero 
or have a leading 1. Example: 11 and 0 are 
accepted; 011, 00, 10 are rejected. 

37

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 d) (Solution)
The only allowed string that starts with 0 is 0 itself. The 
following FSM will move into the ”divisibility by 3” FSM 
if a leading 1 is read. If a leading 0 is read, the rest of the 
FSM (states e,f below) makes sure nothing else is read. 

38

Iverson exam 2015 11

d) [3 marks] Draw a FSM from the description that accepts precisely binary numbers that are
divisible by 310 and either are the number zero or have a leading 1. Example: 11 and 0 are
accepted; 011, 00, 10 are rejected.

Solution: The only allowed string that starts with 0 is 0 itself. The following FSM will move
into the ”divisibility by 3” FSM if a leading 1 is read. If a leading 0 is read, the rest of the FSM
(states e,f below) makes sure nothing else is read.

a b c

0

0

0

1

1

1

start d e f

0,1

0,10

1

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 d) (Solution)
The only allowed string that starts with 0 is 0 itself. The 
following FSM will move into the ”divisibility by 3” FSM 
if a leading 1 is read. If a leading 0 is read, the rest of the 
FSM (states e,f below) makes sure nothing else is read. 

39

Iverson exam 2015 11

d) [3 marks] Draw a FSM from the description that accepts precisely binary numbers that are
divisible by 310 and either are the number zero or have a leading 1. Example: 11 and 0 are
accepted; 011, 00, 10 are rejected.

Solution: The only allowed string that starts with 0 is 0 itself. The following FSM will move
into the ”divisibility by 3” FSM if a leading 1 is read. If a leading 0 is read, the rest of the FSM
(states e,f below) makes sure nothing else is read.

a b c

0

0

0

1

1

1

start d e f

0,1

0,10

1

This problem 
requires 2 accept 

states.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 d) (Solution)

40

Iverson exam 2015 8

question 2: divisibility testing

In this question, we describe numbers in both decimal and binary form. A decimal number is
subscripted with 10; a binary number is subscripted with 2. Example: 510 = 1012.

You might know some divisibility tests for decimal numbers. Example: a number is divisible
by 3 if and only if the sum of its decimal digits is divisible by 3. This rule does not hold for
binary digits: 310 = 112 but the sum of its binary digits is 210.
We will use finite state machines (FSMs) for our tests. A FSM is a computational device that

reads in a string of bits (0 or 1) and decides whether to accept that string. It has these features:

• states, which are depicted as labelled circles (a, b, c in the example below);

• for each state x, there are precisely two arcs that start at x and point to some other state
(perhaps x again); one arc is labelled 0 and the other 1;

• one state is the start state and one is the accepting state; the start state has an arrow
pointing to it labelled start; the accepting state has a thick border; the start and accepting
states can be the same.

A computation with a FSM is simple to describe. A “current state” v is maintained which is
initialized to be the start state. The input string is read one bit at a time, from left to right.
When a bit b is read, the current state v is updated to be the state that is pointed to from v
by the arc labelled b.
Once the entire input is processed, the FSM accepts the string if v is the accepting state,

otherwise it rejects the string. We assume that the input string has at least one bit.

a b c

0

0

0

1

1

1

start

Figure 1: A finite state machine that accepts binary numbers divisible by 3. Here, a is both the
start state and the accepting state.

Given a FSM, we can illustrate a computation by writing the sequence of states assumed by v,
connecting consecutive labels with an arrow that labelled by the associated input bit. Example:
for the FSM above, here is the computation for input string 110:

a

1�! b

1�! a

0�! a

and here is the computation for input string 100:

a

1�! b

0�! c

0�! b

Start with what we know: the 
given “divisible by 3” FSM.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 d) (Solution)

41

Iverson exam 2015 8

question 2: divisibility testing

In this question, we describe numbers in both decimal and binary form. A decimal number is
subscripted with 10; a binary number is subscripted with 2. Example: 510 = 1012.

You might know some divisibility tests for decimal numbers. Example: a number is divisible
by 3 if and only if the sum of its decimal digits is divisible by 3. This rule does not hold for
binary digits: 310 = 112 but the sum of its binary digits is 210.
We will use finite state machines (FSMs) for our tests. A FSM is a computational device that

reads in a string of bits (0 or 1) and decides whether to accept that string. It has these features:

• states, which are depicted as labelled circles (a, b, c in the example below);

• for each state x, there are precisely two arcs that start at x and point to some other state
(perhaps x again); one arc is labelled 0 and the other 1;

• one state is the start state and one is the accepting state; the start state has an arrow
pointing to it labelled start; the accepting state has a thick border; the start and accepting
states can be the same.

A computation with a FSM is simple to describe. A “current state” v is maintained which is
initialized to be the start state. The input string is read one bit at a time, from left to right.
When a bit b is read, the current state v is updated to be the state that is pointed to from v
by the arc labelled b.
Once the entire input is processed, the FSM accepts the string if v is the accepting state,

otherwise it rejects the string. We assume that the input string has at least one bit.

a b c

0

0

0

1

1

1

start

Figure 1: A finite state machine that accepts binary numbers divisible by 3. Here, a is both the
start state and the accepting state.

Given a FSM, we can illustrate a computation by writing the sequence of states assumed by v,
connecting consecutive labels with an arrow that labelled by the associated input bit. Example:
for the FSM above, here is the computation for input string 110:

a

1�! b

1�! a

0�! a

and here is the computation for input string 100:

a

1�! b

0�! c

0�! b

The old start location won’t work 
because it accepts leading 0’s.  So  

just drop it

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 d) (Solution)

42

Iverson exam 2015 8

question 2: divisibility testing

In this question, we describe numbers in both decimal and binary form. A decimal number is
subscripted with 10; a binary number is subscripted with 2. Example: 510 = 1012.

You might know some divisibility tests for decimal numbers. Example: a number is divisible
by 3 if and only if the sum of its decimal digits is divisible by 3. This rule does not hold for
binary digits: 310 = 112 but the sum of its binary digits is 210.
We will use finite state machines (FSMs) for our tests. A FSM is a computational device that

reads in a string of bits (0 or 1) and decides whether to accept that string. It has these features:

• states, which are depicted as labelled circles (a, b, c in the example below);

• for each state x, there are precisely two arcs that start at x and point to some other state
(perhaps x again); one arc is labelled 0 and the other 1;

• one state is the start state and one is the accepting state; the start state has an arrow
pointing to it labelled start; the accepting state has a thick border; the start and accepting
states can be the same.

A computation with a FSM is simple to describe. A “current state” v is maintained which is
initialized to be the start state. The input string is read one bit at a time, from left to right.
When a bit b is read, the current state v is updated to be the state that is pointed to from v
by the arc labelled b.
Once the entire input is processed, the FSM accepts the string if v is the accepting state,

otherwise it rejects the string. We assume that the input string has at least one bit.

a b c

0

0

0

1

1

1

start

Figure 1: A finite state machine that accepts binary numbers divisible by 3. Here, a is both the
start state and the accepting state.

Given a FSM, we can illustrate a computation by writing the sequence of states assumed by v,
connecting consecutive labels with an arrow that labelled by the associated input bit. Example:
for the FSM above, here is the computation for input string 110:

a

1�! b

1�! a

0�! a

and here is the computation for input string 100:

a

1�! b

0�! c

0�! b

d

1

Add it a new start node — the 1 transition 
goes to the same spot as the old start node.

start

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 d) (Solution)

43

Iverson exam 2015 8

question 2: divisibility testing

In this question, we describe numbers in both decimal and binary form. A decimal number is
subscripted with 10; a binary number is subscripted with 2. Example: 510 = 1012.

You might know some divisibility tests for decimal numbers. Example: a number is divisible
by 3 if and only if the sum of its decimal digits is divisible by 3. This rule does not hold for
binary digits: 310 = 112 but the sum of its binary digits is 210.
We will use finite state machines (FSMs) for our tests. A FSM is a computational device that

reads in a string of bits (0 or 1) and decides whether to accept that string. It has these features:

• states, which are depicted as labelled circles (a, b, c in the example below);

• for each state x, there are precisely two arcs that start at x and point to some other state
(perhaps x again); one arc is labelled 0 and the other 1;

• one state is the start state and one is the accepting state; the start state has an arrow
pointing to it labelled start; the accepting state has a thick border; the start and accepting
states can be the same.

A computation with a FSM is simple to describe. A “current state” v is maintained which is
initialized to be the start state. The input string is read one bit at a time, from left to right.
When a bit b is read, the current state v is updated to be the state that is pointed to from v
by the arc labelled b.
Once the entire input is processed, the FSM accepts the string if v is the accepting state,

otherwise it rejects the string. We assume that the input string has at least one bit.

a b c

0

0

0

1

1

1

start

Figure 1: A finite state machine that accepts binary numbers divisible by 3. Here, a is both the
start state and the accepting state.

Given a FSM, we can illustrate a computation by writing the sequence of states assumed by v,
connecting consecutive labels with an arrow that labelled by the associated input bit. Example:
for the FSM above, here is the computation for input string 110:

a

1�! b

1�! a

0�! a

and here is the computation for input string 100:

a

1�! b

0�! c

0�! b

d

1

e0

But a 0 should be accepted, so we 
add that as an accept state.

start

http://www.ucalgary.ca/


Iverson Exam 2015

Question 2 d) (Solution)

44

Iverson exam 2015 8

question 2: divisibility testing

In this question, we describe numbers in both decimal and binary form. A decimal number is
subscripted with 10; a binary number is subscripted with 2. Example: 510 = 1012.

You might know some divisibility tests for decimal numbers. Example: a number is divisible
by 3 if and only if the sum of its decimal digits is divisible by 3. This rule does not hold for
binary digits: 310 = 112 but the sum of its binary digits is 210.
We will use finite state machines (FSMs) for our tests. A FSM is a computational device that

reads in a string of bits (0 or 1) and decides whether to accept that string. It has these features:

• states, which are depicted as labelled circles (a, b, c in the example below);

• for each state x, there are precisely two arcs that start at x and point to some other state
(perhaps x again); one arc is labelled 0 and the other 1;

• one state is the start state and one is the accepting state; the start state has an arrow
pointing to it labelled start; the accepting state has a thick border; the start and accepting
states can be the same.

A computation with a FSM is simple to describe. A “current state” v is maintained which is
initialized to be the start state. The input string is read one bit at a time, from left to right.
When a bit b is read, the current state v is updated to be the state that is pointed to from v
by the arc labelled b.
Once the entire input is processed, the FSM accepts the string if v is the accepting state,

otherwise it rejects the string. We assume that the input string has at least one bit.

a b c

0

0

0

1

1

1

start

Figure 1: A finite state machine that accepts binary numbers divisible by 3. Here, a is both the
start state and the accepting state.

Given a FSM, we can illustrate a computation by writing the sequence of states assumed by v,
connecting consecutive labels with an arrow that labelled by the associated input bit. Example:
for the FSM above, here is the computation for input string 110:

a

1�! b

1�! a

0�! a

and here is the computation for input string 100:

a

1�! b

0�! c

0�! b

d

1

e0 d0,1

0,1

But we can’t accept a 0 with anything 
else after that.  So all “out” 

transitions go to complete sink.

start

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: Pebble Game
Alice and Bob play a 2-player game. A number of pebbles are placed in various positions 
that are arranged horizontally. On a turn, a player moves one pebble and to the left. 
However, not all such moves are valid; valid moves are specified as part of the game. If no 
pebble can be moved, then the player whose turn it is loses and the other player wins. 
Example: here is a game with 3 positions (circles) and 2 pebbles (triangles). The arcs show 
the valid moves. 

Here, Alice can win the game by moving the rightmost pebble to the middle. Now Bob’s 
only option is to move one of these pebbles to the leftmost point; then Alice moves the 
other pebble left, and Bob has no moves so Alice wins. 
In the following questions, assume both Alice and Bob play perfectly. That is, if the current 
player can move so that that they can win by continuing to play perfectly, then they make a 
winning move. 

45

Iverson exam 2015 12

question 3: pebble game

Alice and Bob play a 2-player game. A number of pebbles are placed in various positions that
are arranged horizontally. On a turn, a player moves one pebble and to the left. However, not
all such moves are valid; valid moves are specified as part of the game. If no pebble can be
moved, then the player whose turn it is loses and the other player wins.
Example: here is a game with 3 positions (circles) and 2 pebbles (triangles). The arcs show

the valid moves.

Here, Alice can win the game by moving the rightmost pebble to the middle. Now Bob’s only
option is to move one of these pebbles to the leftmost point; then Alice moves the other pebble
left, and Bob has no moves so Alice wins.
In the following questions, assume both Alice and Bob play perfectly. That is, if the current

player can move so that that they can win by continuing to play perfectly, then they make a
winning move.

a) [2 marks] Who wins this game? Remember, Alice plays first. Explain briefly. It might help
to label the pebbles.

Solution: Call the pebbles a, b, c in order from left to right.
Alice can force a win. She moves pebble b to the position with pebble a. She can now

guarantee a win through the given strategy:

• When Bob moves pebble c, Alice responds by moving c to the leftmost position.

• When Bob moves one of a or b to the leftmost position, Alice responds by moving the
other to this position.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: a)

[2 marks] Who wins this game? Remember, Alice 
plays first. Explain briefly. It might help to label the 
pebbles. 

46

Iverson exam 2015 12

question 3: pebble game

Alice and Bob play a 2-player game. A number of pebbles are placed in various positions that
are arranged horizontally. On a turn, a player moves one pebble and to the left. However, not
all such moves are valid; valid moves are specified as part of the game. If no pebble can be
moved, then the player whose turn it is loses and the other player wins.
Example: here is a game with 3 positions (circles) and 2 pebbles (triangles). The arcs show

the valid moves.

Here, Alice can win the game by moving the rightmost pebble to the middle. Now Bob’s only
option is to move one of these pebbles to the leftmost point; then Alice moves the other pebble
left, and Bob has no moves so Alice wins.
In the following questions, assume both Alice and Bob play perfectly. That is, if the current

player can move so that that they can win by continuing to play perfectly, then they make a
winning move.

a) [2 marks] Who wins this game? Remember, Alice plays first. Explain briefly. It might help
to label the pebbles.

Solution: Call the pebbles a, b, c in order from left to right.
Alice can force a win. She moves pebble b to the position with pebble a. She can now

guarantee a win through the given strategy:

• When Bob moves pebble c, Alice responds by moving c to the leftmost position.

• When Bob moves one of a or b to the leftmost position, Alice responds by moving the
other to this position.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: a) (Solution)
Call the pebbles a, b, c in order from left to right.  
Alice can force a win. She moves pebble b to the position 
with pebble a. She can now guarantee a win through the given 
strategy: 
• When Bob moves pebble c, Alice responds by moving c to 
the leftmost position. 
• When Bob moves one of a or b to the leftmost position, 
Alice responds by moving the other to this position. 

47

Iverson exam 2015 12

question 3: pebble game

Alice and Bob play a 2-player game. A number of pebbles are placed in various positions that
are arranged horizontally. On a turn, a player moves one pebble and to the left. However, not
all such moves are valid; valid moves are specified as part of the game. If no pebble can be
moved, then the player whose turn it is loses and the other player wins.
Example: here is a game with 3 positions (circles) and 2 pebbles (triangles). The arcs show

the valid moves.

Here, Alice can win the game by moving the rightmost pebble to the middle. Now Bob’s only
option is to move one of these pebbles to the leftmost point; then Alice moves the other pebble
left, and Bob has no moves so Alice wins.
In the following questions, assume both Alice and Bob play perfectly. That is, if the current

player can move so that that they can win by continuing to play perfectly, then they make a
winning move.

a) [2 marks] Who wins this game? Remember, Alice plays first. Explain briefly. It might help
to label the pebbles.

Solution: Call the pebbles a, b, c in order from left to right.
Alice can force a win. She moves pebble b to the position with pebble a. She can now

guarantee a win through the given strategy:

• When Bob moves pebble c, Alice responds by moving c to the leftmost position.

• When Bob moves one of a or b to the leftmost position, Alice responds by moving the
other to this position.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: a) (Proof)

48

Iverson exam 2015 12

question 3: pebble game

Alice and Bob play a 2-player game. A number of pebbles are placed in various positions that
are arranged horizontally. On a turn, a player moves one pebble and to the left. However, not
all such moves are valid; valid moves are specified as part of the game. If no pebble can be
moved, then the player whose turn it is loses and the other player wins.
Example: here is a game with 3 positions (circles) and 2 pebbles (triangles). The arcs show

the valid moves.

Here, Alice can win the game by moving the rightmost pebble to the middle. Now Bob’s only
option is to move one of these pebbles to the leftmost point; then Alice moves the other pebble
left, and Bob has no moves so Alice wins.
In the following questions, assume both Alice and Bob play perfectly. That is, if the current

player can move so that that they can win by continuing to play perfectly, then they make a
winning move.

a) [2 marks] Who wins this game? Remember, Alice plays first. Explain briefly. It might help
to label the pebbles.

Solution: Call the pebbles a, b, c in order from left to right.
Alice can force a win. She moves pebble b to the position with pebble a. She can now

guarantee a win through the given strategy:

• When Bob moves pebble c, Alice responds by moving c to the leftmost position.

• When Bob moves one of a or b to the leftmost position, Alice responds by moving the
other to this position.

Alice

Bob

Alice

Bob

Alice
Alice wins Alice wins

Game Tree: And/Or tree: 
Alice (or) can choose one 
option, but we play every 
possibility for Bob (and).

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: b)

[2 marks] Who wins this game? Explain briefly. 

49

Iverson exam 2015 13

b) [2 marks] Who wins this game? Explain briefly.

Solution: Label the pebbles a, b, c, d in left to right order.
Bob will win through the following strategy.

• When Alice moves either a or d to the leftmost position, Bob responds by moving the
other to the leftmost position.

• When Alice moves either b or c, Bob responds by moving the other to the same position.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: b) (Solution)
Label the pebbles a, b, c, d in left to right order. Bob will win 
through the following strategy. 
• When Alice moves either a or d to the leftmost position, Bob 
responds by moving the other to the leftmost position. 
• When Alice moves either b or c, Bob responds by moving 
the other to the same position. 

50

Iverson exam 2015 13

b) [2 marks] Who wins this game? Explain briefly.

Solution: Label the pebbles a, b, c, d in left to right order.
Bob will win through the following strategy.

• When Alice moves either a or d to the leftmost position, Bob responds by moving the
other to the leftmost position.

• When Alice moves either b or c, Bob responds by moving the other to the same position.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: b) (Proof)

51

Alice (and)

Bob (or)

Alice

Bob

Bob wins

Iverson exam 2015 13

b) [2 marks] Who wins this game? Explain briefly.

Solution: Label the pebbles a, b, c, d in left to right order.
Bob will win through the following strategy.

• When Alice moves either a or d to the leftmost position, Bob responds by moving the
other to the leftmost position.

• When Alice moves either b or c, Bob responds by moving the other to the same position.

Bob wins Bob wins Bob wins

Bob wins

Bob wins

Bob wins

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: c)
[3 marks] Consider the game with n positions numbered from 0 to n − 
1 (left to right) and only these valid moves: for 0 ≤ v ≤ n−1, a 
pebble can move from v to v−1; for v ≥ 2, a pebble can move from v 
to v−2. The game with n=7 is shown below. 

Write a function winner(i, j) that determines who wins on such a 
board with one pebble at location i > 0 and one pebble at location j > 
0, where possibly i = j. Return a string, either "Alice" or "Bob". 
Explain briefly why your code is correct. For full marks, your algorithm 
should run in a fraction of a second, even for i and j as large as 109. 
Hint: there is a nice pattern. 

52

Iverson exam 2015 14

c) [3 marks] Consider the game with n positions numbered from 0 to n � 1 (left to right) and
only these valid moves: for 0  v  n � 1, a pebble can move from v to v � 1; for v � 2, a
pebble can move from v to v � 2. The game with n = 7 is shown below.

0 1 2 3 4 5 6

Write a function winner(i, j) that determines who wins on such a board with one pebble at
location i > 0 and one pebble at location j > 0, where possibly i = j. Return a string, either
"Alice" or "Bob".
Explain briefly why your code is correct. For full marks, your algorithm should run in a

fraction of a second, even for i and j as large as 109. Hint: there is a nice pattern.

Solution: Alice wins if i and j are di↵erent mod 3, Bob wins if they are the same mod 3. A
short explanation is that if they are di↵erent mod 3 then Alice is able to make them the same
by subtracting 1 or 2 from the larger mod 3 value. If this did not end the game, then Bob’s only
move results in them being di↵erent mod 3 and Alice repeats. If they are initially the same mod
3, then Bob just follow’s Alice’s strategy described above.

A more precise explanation follows. Change the label of each position i to i mod 3. In
left-to-right order, the labels are 0, 1, 2, 0, 1, 2, 0, 1, 2, . . ..
Let us call the placement of two pebbles similar if they lie on positions with the same label.

Otherwise they are dissimilar. Note that the end placement (both pebbles on 0) is similar.

• There is a way to turn any dissimilar placement into a similar placement by moving one
pebble. Move the pebble on the higher mod 3 label to match the other.

• Any single move from a similar placement will result in a dissimilar placement because
there is no move between positions with the same label.

Whenever a player plays from a dissimilar placement, then make the move that results in
a similar placement. If this did not finish the game, then the other player is forced to play
from a similar position which creates a dissimilar position (and cannot be the last move in the
game). This strategy is repeated. Thus, if the initial placement is dissimilar then Alice will win,
otherwise Bob will win.

def winner(i, j):

if i % 3 == j % 3:

return "Bob":

else:

return "Alice"

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: c) (Solution)
Alice wins if i and j are different mod 3, Bob wins if they are 
the same mod 3. A short explanation is that if they are different 
mod 3 then Alice is able to make them the same by subtracting 1 
or 2 from the larger mod 3 value. If this did not end the game, 
then Bob’s only move results in them being different mod 3 and 
Alice repeats. If they are initially the same mod 3, then Bob just 
follow’s Alice’s strategy described above. 
A more precise explanation follows. Change the label of each 
position i to i mod 3. In left-to-right order, the labels are 0, 1, 2, 
0, 1, 2, 0, 1, 2, . . ..  Eg:

53

Iverson exam 2015 14

c) [3 marks] Consider the game with n positions numbered from 0 to n � 1 (left to right) and
only these valid moves: for 0  v  n � 1, a pebble can move from v to v � 1; for v � 2, a
pebble can move from v to v � 2. The game with n = 7 is shown below.

0 1 2 3 4 5 6

Write a function winner(i, j) that determines who wins on such a board with one pebble at
location i > 0 and one pebble at location j > 0, where possibly i = j. Return a string, either
"Alice" or "Bob".

Explain briefly why your code is correct. For full marks, your algorithm should run in a
fraction of a second, even for i and j as large as 109. Hint: there is a nice pattern.

Solution: Alice wins if i and j are di↵erent mod 3, Bob wins if they are the same mod 3. A
short explanation is that if they are di↵erent mod 3 then Alice is able to make them the same
by subtracting 1 or 2 from the larger mod 3 value. If this did not end the game, then Bob’s only
move results in them being di↵erent mod 3 and Alice repeats. If they are initially the same mod
3, then Bob just follow’s Alice’s strategy described above.

A more precise explanation follows. Change the label of each position i to i mod 3. In
left-to-right order, the labels are 0, 1, 2, 0, 1, 2, 0, 1, 2, . . ..

Let us call the placement of two pebbles similar if they lie on positions with the same label.
Otherwise they are dissimilar. Note that the end placement (both pebbles on 0) is similar.

• There is a way to turn any dissimilar placement into a similar placement by moving one
pebble. Move the pebble on the higher mod 3 label to match the other.

• Any single move from a similar placement will result in a dissimilar placement because
there is no move between positions with the same label.

Whenever a player plays from a dissimilar placement, then make the move that results in
a similar placement. If this did not finish the game, then the other player is forced to play
from a similar position which creates a dissimilar position (and cannot be the last move in the
game). This strategy is repeated. Thus, if the initial placement is dissimilar then Alice will win,
otherwise Bob will win.

def winner(i, j):

if i % 3 == j % 3:

return "Bob":

else:

return "Alice"

0 01 2

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: c) (Solution)

54

Let us call the placement of two pebbles similar if they lie on positions with 
the same label. Otherwise they are dissimilar. Note that the end placement 
(both pebbles on 0) is similar. 
• There is a way to turn any dissimilar placement into a similar placement by 

moving one pebble. Move the pebble on the higher mod 3 label to match 
the other. 

• Any single move from a similar placement will result in a dissimilar 
placement because there is no move between positions with the same label. 

Whenever a player plays from a dissimilar placement, then make the move 
that results in a similar placement. If this did not finish the game, then the 
other player is forced to play from a similar position which creates a 
dissimilar position (and cannot be the last move in the game). This strategy is 
repeated. Thus, if the initial placement is dissimilar then Alice will win, 
otherwise Bob will win.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: c) (Solution)

55

def winner(i, j): 
    if i % 3 == j % 3: 
        return "Bob": 
    else: 
        return "Alice"

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: c) (Proof for Alice’s win)

56

Iverson exam 2015 14

c) [3 marks] Consider the game with n positions numbered from 0 to n � 1 (left to right) and
only these valid moves: for 0  v  n � 1, a pebble can move from v to v � 1; for v � 2, a
pebble can move from v to v � 2. The game with n = 7 is shown below.

0 1 2 3 4 5 6

Write a function winner(i, j) that determines who wins on such a board with one pebble at
location i > 0 and one pebble at location j > 0, where possibly i = j. Return a string, either
"Alice" or "Bob".
Explain briefly why your code is correct. For full marks, your algorithm should run in a

fraction of a second, even for i and j as large as 109. Hint: there is a nice pattern.

Solution: Alice wins if i and j are di↵erent mod 3, Bob wins if they are the same mod 3. A
short explanation is that if they are di↵erent mod 3 then Alice is able to make them the same
by subtracting 1 or 2 from the larger mod 3 value. If this did not end the game, then Bob’s only
move results in them being di↵erent mod 3 and Alice repeats. If they are initially the same mod
3, then Bob just follow’s Alice’s strategy described above.

A more precise explanation follows. Change the label of each position i to i mod 3. In
left-to-right order, the labels are 0, 1, 2, 0, 1, 2, 0, 1, 2, . . ..
Let us call the placement of two pebbles similar if they lie on positions with the same label.

Otherwise they are dissimilar. Note that the end placement (both pebbles on 0) is similar.

• There is a way to turn any dissimilar placement into a similar placement by moving one
pebble. Move the pebble on the higher mod 3 label to match the other.

• Any single move from a similar placement will result in a dissimilar placement because
there is no move between positions with the same label.

Whenever a player plays from a dissimilar placement, then make the move that results in
a similar placement. If this did not finish the game, then the other player is forced to play
from a similar position which creates a dissimilar position (and cannot be the last move in the
game). This strategy is repeated. Thus, if the initial placement is dissimilar then Alice will win,
otherwise Bob will win.

def winner(i, j):

if i % 3 == j % 3:

return "Bob":

else:

return "Alice"

0 01 2
same 
different

Initial placement

Alice

Bob

Alice

Bob

✓ ✓ ✓
Alice

Bob

✓
✓

✓
This shows Alice can always 
win (if “different”) for a 6-node 
game.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: c) (Proof for Alice’s win)

57

Iverson exam 2015 14

c) [3 marks] Consider the game with n positions numbered from 0 to n � 1 (left to right) and
only these valid moves: for 0  v  n � 1, a pebble can move from v to v � 1; for v � 2, a
pebble can move from v to v � 2. The game with n = 7 is shown below.

0 1 2 3 4 5 6

Write a function winner(i, j) that determines who wins on such a board with one pebble at
location i > 0 and one pebble at location j > 0, where possibly i = j. Return a string, either
"Alice" or "Bob".
Explain briefly why your code is correct. For full marks, your algorithm should run in a

fraction of a second, even for i and j as large as 109. Hint: there is a nice pattern.

Solution: Alice wins if i and j are di↵erent mod 3, Bob wins if they are the same mod 3. A
short explanation is that if they are di↵erent mod 3 then Alice is able to make them the same
by subtracting 1 or 2 from the larger mod 3 value. If this did not end the game, then Bob’s only
move results in them being di↵erent mod 3 and Alice repeats. If they are initially the same mod
3, then Bob just follow’s Alice’s strategy described above.

A more precise explanation follows. Change the label of each position i to i mod 3. In
left-to-right order, the labels are 0, 1, 2, 0, 1, 2, 0, 1, 2, . . ..
Let us call the placement of two pebbles similar if they lie on positions with the same label.

Otherwise they are dissimilar. Note that the end placement (both pebbles on 0) is similar.

• There is a way to turn any dissimilar placement into a similar placement by moving one
pebble. Move the pebble on the higher mod 3 label to match the other.

• Any single move from a similar placement will result in a dissimilar placement because
there is no move between positions with the same label.

Whenever a player plays from a dissimilar placement, then make the move that results in
a similar placement. If this did not finish the game, then the other player is forced to play
from a similar position which creates a dissimilar position (and cannot be the last move in the
game). This strategy is repeated. Thus, if the initial placement is dissimilar then Alice will win,
otherwise Bob will win.

def winner(i, j):

if i % 3 == j % 3:

return "Bob":

else:

return "Alice"

0 01 2
same 
different

Initial placement

Alice

Bob

Alice

Bob

✓ ✓ ✓
Alice

Bob

✓
✓

✓
By adding isomorphisms to the 6-node game 
tree, we can extend (or truncate) the 
conclusions of a 6-node to an n-node game. 

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: c) (Proof)

58

For the tree proof, we also need to show the Bob can 
always will in we start off with a similar state, but you 
get the picture…

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: d)

[3 marks] Now consider the same board as the 
previous part, except we may have many pebbles on 
the board. Write pseudocode for a function win(a, 
m, n) where n is the number of positions on the 
board and a[] is an array with m nonnegative 
integers, each between 0 and n-1, specifying the 
initial placement of the pebbles. Again, this code 
should run quickly and you must explain briefly why 
it is correct. 

59

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: d) (Solution)
Call a placement of pebbles similar if both a1 and a2 are even, and dissimilar 
otherwise. Note the game ends in a similar placement. 
• If the placement is dissimilar, then there is a single move that makes it 
similar. That is, if exactly one of a1 or a2 is odd then move a single pebble 
of the corresponding label to a position with label 0. If both a1 and a2 are 
odd then move a pebble from a position with label 2 to a position with label 
1. 

• If the placement is similar, then every move makes it dissimilar. If the move 
is from either a label 1 or a label 2 position, then the corresponding value a1 
or a2 becomes odd. If the move is from a label 0 position, then it ends on a 
label 1 or label 2 position making the corresponding a1 or a2 odd. 

Alice wins if the initial placement is dissimilar and Bob wins if the initial 
placement is similar by following essentially the same strategy as in part c, 
except using this notion of similar and dissimilar. 

60

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: d) (Solution)
def win(a, m, n): 
    a1 = 0  
    a2 = 0  
    for i in a: 
        if i%3 == 1: 
            a1 += 1 
        elif i%3 == 2: 
            a2 += 1  
 
    if a1%2 == 0 and a2%2 == 0: 

      return "Bob"  
    else: 
      return "Alice"

61

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: d) (Solution Alice, dissimilar)

62

Iverson exam 2015 14

c) [3 marks] Consider the game with n positions numbered from 0 to n � 1 (left to right) and
only these valid moves: for 0  v  n � 1, a pebble can move from v to v � 1; for v � 2, a
pebble can move from v to v � 2. The game with n = 7 is shown below.

0 1 2 3 4 5 6

Write a function winner(i, j) that determines who wins on such a board with one pebble at
location i > 0 and one pebble at location j > 0, where possibly i = j. Return a string, either
"Alice" or "Bob".
Explain briefly why your code is correct. For full marks, your algorithm should run in a

fraction of a second, even for i and j as large as 109. Hint: there is a nice pattern.

Solution: Alice wins if i and j are di↵erent mod 3, Bob wins if they are the same mod 3. A
short explanation is that if they are di↵erent mod 3 then Alice is able to make them the same
by subtracting 1 or 2 from the larger mod 3 value. If this did not end the game, then Bob’s only
move results in them being di↵erent mod 3 and Alice repeats. If they are initially the same mod
3, then Bob just follow’s Alice’s strategy described above.

A more precise explanation follows. Change the label of each position i to i mod 3. In
left-to-right order, the labels are 0, 1, 2, 0, 1, 2, 0, 1, 2, . . ..
Let us call the placement of two pebbles similar if they lie on positions with the same label.

Otherwise they are dissimilar. Note that the end placement (both pebbles on 0) is similar.

• There is a way to turn any dissimilar placement into a similar placement by moving one
pebble. Move the pebble on the higher mod 3 label to match the other.

• Any single move from a similar placement will result in a dissimilar placement because
there is no move between positions with the same label.

Whenever a player plays from a dissimilar placement, then make the move that results in
a similar placement. If this did not finish the game, then the other player is forced to play
from a similar position which creates a dissimilar position (and cannot be the last move in the
game). This strategy is repeated. Thus, if the initial placement is dissimilar then Alice will win,
otherwise Bob will win.

def winner(i, j):

if i % 3 == j % 3:

return "Bob":

else:

return "Alice"

0 01 2
similar 
dissimilar

Initial placement

Alice’s move

✓

Bob’s move

Alice’s move

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: d) (Solution Bob, similar)

63

Iverson exam 2015 14

c) [3 marks] Consider the game with n positions numbered from 0 to n � 1 (left to right) and
only these valid moves: for 0  v  n � 1, a pebble can move from v to v � 1; for v � 2, a
pebble can move from v to v � 2. The game with n = 7 is shown below.

0 1 2 3 4 5 6

Write a function winner(i, j) that determines who wins on such a board with one pebble at
location i > 0 and one pebble at location j > 0, where possibly i = j. Return a string, either
"Alice" or "Bob".
Explain briefly why your code is correct. For full marks, your algorithm should run in a

fraction of a second, even for i and j as large as 109. Hint: there is a nice pattern.

Solution: Alice wins if i and j are di↵erent mod 3, Bob wins if they are the same mod 3. A
short explanation is that if they are di↵erent mod 3 then Alice is able to make them the same
by subtracting 1 or 2 from the larger mod 3 value. If this did not end the game, then Bob’s only
move results in them being di↵erent mod 3 and Alice repeats. If they are initially the same mod
3, then Bob just follow’s Alice’s strategy described above.

A more precise explanation follows. Change the label of each position i to i mod 3. In
left-to-right order, the labels are 0, 1, 2, 0, 1, 2, 0, 1, 2, . . ..
Let us call the placement of two pebbles similar if they lie on positions with the same label.

Otherwise they are dissimilar. Note that the end placement (both pebbles on 0) is similar.

• There is a way to turn any dissimilar placement into a similar placement by moving one
pebble. Move the pebble on the higher mod 3 label to match the other.

• Any single move from a similar placement will result in a dissimilar placement because
there is no move between positions with the same label.

Whenever a player plays from a dissimilar placement, then make the move that results in
a similar placement. If this did not finish the game, then the other player is forced to play
from a similar position which creates a dissimilar position (and cannot be the last move in the
game). This strategy is repeated. Thus, if the initial placement is dissimilar then Alice will win,
otherwise Bob will win.

def winner(i, j):

if i % 3 == j % 3:

return "Bob":

else:

return "Alice"

0 01 2
similar 
dissimilar

Initial placement

Alice’s move

✓
Bob’s move

http://www.ucalgary.ca/


Iverson Exam 2015

Question 3: d) (Solution Bob, similar)

64

Iverson exam 2015 14

c) [3 marks] Consider the game with n positions numbered from 0 to n � 1 (left to right) and
only these valid moves: for 0  v  n � 1, a pebble can move from v to v � 1; for v � 2, a
pebble can move from v to v � 2. The game with n = 7 is shown below.

0 1 2 3 4 5 6

Write a function winner(i, j) that determines who wins on such a board with one pebble at
location i > 0 and one pebble at location j > 0, where possibly i = j. Return a string, either
"Alice" or "Bob".
Explain briefly why your code is correct. For full marks, your algorithm should run in a

fraction of a second, even for i and j as large as 109. Hint: there is a nice pattern.

Solution: Alice wins if i and j are di↵erent mod 3, Bob wins if they are the same mod 3. A
short explanation is that if they are di↵erent mod 3 then Alice is able to make them the same
by subtracting 1 or 2 from the larger mod 3 value. If this did not end the game, then Bob’s only
move results in them being di↵erent mod 3 and Alice repeats. If they are initially the same mod
3, then Bob just follow’s Alice’s strategy described above.

A more precise explanation follows. Change the label of each position i to i mod 3. In
left-to-right order, the labels are 0, 1, 2, 0, 1, 2, 0, 1, 2, . . ..
Let us call the placement of two pebbles similar if they lie on positions with the same label.

Otherwise they are dissimilar. Note that the end placement (both pebbles on 0) is similar.

• There is a way to turn any dissimilar placement into a similar placement by moving one
pebble. Move the pebble on the higher mod 3 label to match the other.

• Any single move from a similar placement will result in a dissimilar placement because
there is no move between positions with the same label.

Whenever a player plays from a dissimilar placement, then make the move that results in
a similar placement. If this did not finish the game, then the other player is forced to play
from a similar position which creates a dissimilar position (and cannot be the last move in the
game). This strategy is repeated. Thus, if the initial placement is dissimilar then Alice will win,
otherwise Bob will win.

def winner(i, j):

if i % 3 == j % 3:

return "Bob":

else:

return "Alice"

0 01 2
similar 
dissimilar

Initial placement

Alice’s move

✓
Bob’s move

There’s a bit of a “leap of faith” here!
Can we go from reasoning about one pebble to n pebbles?  
Well, yes: we can think of each pebble in a game as a 
separate game.  None of the games really matter except for 
the last one, which determines the evenness or oddness of 
the initial state…

http://www.ucalgary.ca/


Iverson Exam 2015

Question 4: Fractions
You are given a fraction a/b ≥ 0. However, a and b might be large. So, given a 
positive integer N, you want to find a “simpler” fraction c/d that is as close to a/b 
as possible but with 0 ≤ c,d ≤ N. That is, you should find c and d so that 
0≤c≤N, 0<d≤N, and ︎|a/b−c/d| ︎ is as small as possible. If there are multiple 
solutions, choose the answer such that c + d is as small as possible. 
[3 marks] Write a function simpler(a,b,N) that prints:
 closest simpler fraction c / d 
where c and d are the numerator and denominator of the answer. Remember, you 
can write helper functions.  
Example: calling simpler(5, 7, 5) prints:
 closest simpler fraction 3 / 4 
and calling simpler(11, 17, 7) prints:
 closest simpler fraction 2 / 3 

65

http://www.ucalgary.ca/


Iverson Exam 2015

Question 4 (Solution)
Simply iterate over all pairs (c,d) with 0 ≤ c ≤ N 
and 1 ≤ d ≤ N. If one of them forms a fraction that is 
closer than the previous best, then keep it. 
The following code does exactly this. Note, that it never 
explicitly checks that c + d is the smallest among all 
possible answers. The order we iterate over c, d 
guarantees the first time we encounter a closest fraction 
that it will have minimum c + d value. Can you see 
why? 

66

http://www.ucalgary.ca/


Iverson Exam 2015

Question 4 (Solution)

def simpler(a, b, N):  

    c=0  

    d=1  

    for num in range(1,N+1): 

        for den in range(1,N+1): 

            if closer(num, den, c, d, a, b): 

                c, d = num, den 

    print("closest simpler fraction", c, "/", d)

67

} Requires a double 
“for” loop.

http://www.ucalgary.ca/


Iverson Exam 2015

Question 4
# is the fraction num/den closer to a/b than c/d? 

def closer(num, den, c, d, a, b): 

    #num1/den1 = distance between num/den and a/b 

    num1 = abs(num*b - a*den) 

    den1 = den*b 

    #num2/den2 = distance between a/b and c/d 

    num2 = abs(c*b - a*d) 

    den2 = d*b 

    #cross multiply to check num1/den1 < num2/den2 

    return num1*den2 < num2*den1 

68

“closer” could be defined in several ways, but if done by 
division, careful attention has to be paid to explicit conversion.

http://www.ucalgary.ca/

