Continuous Integration
Hudson

SENG 403

Tutorial 4

Department of Computer Science
University of Calgary

SENG 403 - Winter 2012

The Integration Dilemma

e If separate groups are working on different parts of a
project for a long time, integrating their work will
become a nightmare!

e It could take months or even years!

e Solution: Every one should integrate their work
frequently.
¢ Any individual developer's work is only a few hours
away from a shared project state and can be integrated
back into that state in minutes.

SENG 403 - Winter 2012

Agenda

* What is Continuous Integration?
¢ The benefits of CI

e CI Practices

* Using Hudson as a CI server

SENG 403 - Winter 2012

, What is Continuous Integration,
Anyway?

¢ The basic idea is that every developer on the team
integrating frequently, usually daily, against a VCS.
e Wait a minute! Isn’t it what we practiced in the first
tutorial? Not Exactly!

e It is not just about committing changes into the
shared repository. It also deals with making sure that
the project stays in a stable state.

SENG 403 - Winter 2012

The Typical Workflow Runring Tests
m

Check Out
Working
Copy

Making Failure (Resolve
Changes and Rebuild)

SENG 403 - Winter 2012

Automated " .
-m)> Havinga) Working
Stable Build Copy

Includes
Running Tests

Failure

Why commit frequently?

e If there is a clash between two developers, frequent
commits will reveal it when the second developer
commits.

e The error will be detected rapidly.
* The most important thing is to fix it ASAP.

CI is about communication. Developers find
inconsistencies and fix them rapidly.

It guarantees that the latest version of software in the
repository stays stable. The working copies will not deviate
from it dramatically and integrating them back does not
need too much effort.

SENG 403 - Winter 2012

——
P P

Practices of Continuous Integration (1)

——

Practices of Continuous Integration (2)

Maintain a Single Source of Repository

We should use a Version Control System, like SVN.

It will contain the source code as well as everything
we need to build it, like Ant scripts, DB schemas, test
scripts, etc.

Rule of thumb: You should be able to check out from
the repo and build it on a virgin machine.

SENG 403 - Winter 2012

Automate the Build

Turning the sources into running systems can be a
complicated process. However it can, and should, be
automated.

Use automated environments like Ant, Nant, make,
MSBuild, etc.

We can use IDE built-in build features, but we should
not rely on them for the automated build process on
the CI server.

SENG 403 - Winter 2012

——
P P

Practices of Continuous Integration (3)

——

Practices of Continuous Integration (4)

P

Make Your Build Self-Testing

By compiling and linking the source code, some errors
can be found, but most bugs are undetected.

To catch lots of bugs, we need a suite of automated
tests that can check a large part of the source code.

Do not forget: Good tests can catch bugs, but they do
not prove the absence of bugs.

SENG 403 - Winter 2012

——

Practices of Continuous Integration (5)

Every Commit Should Build the Mainline on an
Integration Machine

A commit is considered to be done, if it builds
successfully on an integration server.
It could be either

e Manual: The build is started by the developer.

e Automatic: Every time a commit against the repo finishes,
the CI server automatically checks out the head and initiates
the build process.

Some organizations do regular scheduled builds.

The mainline should be kept in a healthy state. If it breaks,
it must be fixed right away.

SENG 403 - Winter 2012

P

Practices of Continuous Integration (6)

Everyone Commits to the Mainline Every Day

By committing frequently, we will tell other
developers about the changes we’ve made.

When we want to commit, we should first update. It
will reveal compilation errors. By running tests, we
will know about bugs as well.

The sooner we spot conflicts, the easier is to fix them.

Rule of thumb: Commit to the repo every day, even
multiple times a day.

SENG 403 - Winter 2012

——

Keep the Build Fast

The whole point of Continuous Integration is to
provide rapid feedback.

The XP guideline says that builds should finish in ten
minutes.

If a short build is not possible, a staged build (aka
build pipeline) can be used.

SENG 403 - Winter 2012

/

Practices of Continuous Integration (7)

Test in a Clone of the Production Environment

 The point of testing is to show any problem that the
system will have in production.

® So, we should run tests in an environment similar to
the production environment.

* Not always possible,

 Consider using Virtualization.

SENG 403 - Winter 2012

/

Practices of Continuous Integration (9)

Everyone can see what's happening

* Continuous Integration is all about
communication.

* The most important thing to
communicate: The state of the
mainline build

* Some teams even go further by
hooking up the CI display to some
fancy lights.

* The CI website is advantages for
distributed teams.

SENG 403 - Winter 2012

Practices of Continuous Integration (8)

Make it Easy for Anyone to Get the Latest
Executable

¢ Customer will tell you what they want, when they see
a running system. :P

* Any team member should be able to get the latest
version of the executable.

* Hint: Make sure there's a well known place where
people can find the latest executable.

SENG 403 - Winter 2012

\/’

Practices of Continuous Integration (10)
Automate Deployment

* We might have multiple machines for the primary
and secondary builds. We need to transfer
executables between these machines.

¢ So, the deployment should be automated.

* The consequence is that you should also have scripts

that allow you to deploy into production with similar
ease.

SENG 403 - Winter 2012

Hudson

\;//’
e
Setting Up a Build in Hudson

° Hudson monitors source control repositories. When
changes are committed, Hudson can:

¢ Execute automated builds on various platforms

e Run automated tests
e It supports different VCSs, like SVN, CVS, and git.
¢ It’s expandable by adding plugins.
e It reports the results of automated test run

® Build results can be monitored on the web console or
pushed to users via RSS, Email, and IM.

SENG 403 - Winter 2012

¢ Before we set up a build job in Hudson, the following
conditions must be met:
¢ We must have an accessible source code repository.
e The repository must contain the source code we want
to build.
¢ The repository must contain build scripts that will build
the source. These are usually Ant or Maven scripts,

although Hudson also supports simple shell scripts,
NAnt, and MSBuild.

SENG 403 - Winter 2012

Create A New Job

New Job (1 of 6)

Job name SENG 403 Sample
© Build a free-style software project
This is the central feature of Hudson. Hudson will build your project, combining any SCM with any build system, and this

© Monitor an external job
This type of job allows you to record the execution of a process run outside Hudson, even on a remote machine. This is
existing automation system. See the documentation for more details.

© Build multi-configuration project (alpha)
Suitable for projects that need a large number of different configurations, such as testing on multiple environments, pla

© copy existing job

Copy from
oK.

SENG 403 - Winter 2012

New Job (3 of 6)

< s W e LastSuccore Lost P Lastouration
.) e s wn n [5)
& moves Qo ot 5o cavs (zazen) o 13 ays 2252 . 5)
o ozt @ M e Smoa P— 2mnto e)
o Q@ B s Smo 8 dors (Smo 2 deya (P 5]
o b nhe ausse. Q@ B mm Erp——— JErp——— s)
- Y e Fy— - -)
e Q & a7 doys 425 coye (25 120 [}
e) e s - °
=l ofis QO B 5 mo 13 cays (22052) 5 mo 13 cays (22032) 15500 5]
o & - B =)
o & " S P B
a B 10 1m0 (814) E— P
SENG 403 - Winter 2012
* Provide a
description roject name 9 S
Description This is an example that shows how to use Hudson.

O Git

e If we do not check
the “Discard Old
Builds,” Hudson
will keep records
of all the previous
builds.

[¥ piscard old Builds
Days to keep builds

Max # of builds to keep 5

[T This build is parameterized

SENG 403 - Winter 2012

New Job (4 of 6)

if not empty, build records are only kept up to this number of days

f not empty, only up to this number of build records are kept

* We ask Hudson to poll the VCS (or SCM), in this case

SVN, every 5 minutes and start the build if there has

been a commit.

Build Triggers

[T Build after other projects are built

[7] Trigger builds remotely (e.g., from scripts)
[T Build periodically

Poll SCM

Schedule seees

SENG 403 - Winter 2012

) Mercurial

® Ssubversion

Modules Repository URL hitps://smntestproject.svn.codeplex.com/svn/trunk
Unable to access https:/ /smntestproject.svn.codeplex.com/svn/trunk : svn: No credential to try.
© Authentication failed (show details)
(Maybe you need to enter credential?)
Local module directory (optional)
Add more ocatons.
Use update @
Fchackad e svn pdace’ buid fastar, Bt this causes the arifacts from the pravious build t remain when a new build searts.
Revert &}

SENG 403 - Winter 2012

New Job (5 of 6)

* Some of the post-build Actions

Publish Javadoc
Javadoc directory trunk/dist/javadoc

Directory relative to the root of the workspace, such as 'myproject/build/javadoc’

[7] Retain Javadoc for each successful build

Archive the artifacts

Files to archive trunk/dist/=*/*

[T Aggregate downstream test results
Publish JUnit test result report
Test report XMLs trunk/dist/junit/ TESTS-TestSuites.xml

Eileset ‘includes’ setting that specifies the generated raw XML report files, such as 'm:

[] Retain long standard output/error

SENG 403 - Winter 2012

New Job (6 of 6) Defining a simple Ant script

<project name="MyProject" default="all" basedir=n.">

* We can provide a list of email recipients to receive an
email every time a build fails.

e It is possible to run other tools to get us some metrics

about the project, like code coverage. Sl

<target name="
<delete ai
</zargec>

S(aist)/>

<target name="compile" depends='clean”>

(aise)n/>

(classes}"/>
air="§(src)” destair="§{classes)">
<classpacn>
<pathelement pach="§{classpath)"/>
>

riteses
SENG 403 - Winter 2012 $/e122PREENG 403 - Winter 2012

</3avac>

The Source Files The Test File

° HelloWorld java! ;) package smn;

b import org.junit.Assert;
X 7 . .

ackage smn import org.junit.Test;
public class Arithmetic {

private int a; public class TestArithmetic {
private int b;

public Arithmetic(int a, int b){
this.a = a;
this.b = b;
1
public int add(){
return a+b;
3
public int multiply(){
return a*b;

}

public static void main(String[] args)({
System.out.println("100 + 35 = "+(new Arithmetic(5)).add()

)

SENG 403 - Winter 2012

Build Status

* The build starts after 5 minutes.
* And it fails! ®
® The status of builds are shown in the Dashbord.

Q@ B wwisme wa

t t i 500 (22)

Last build All recent builds t

failed failed

Last Schedule a
duration build

Last failure

SENG 403 - Winter 2012

@Test
public void adding(){
int x = 10, y = 20;

Arithmetic a = new Arithmetic(x, y)/
Assert.assertEquals(x+y, a.add());
}

@Test

public void multiplying(){
int x = 10, y = 20;
Arithmetic a = new Arithmetic(x, vy);
Assert.assertEquals(x*y, a.multiply()):

SENG 403 - Winter 2012

Project Home

* To see what went wrong, we should go to the project

page.

Hudson

Hudson > SENG 403 Sample

4 Back to Dashboard

Project SENG 403 Sample

% Changes This is an example that shows how to use Hudson.

0, status

@ workspace

£2) Build Now % Workspace
o

© Delete project ;

& Cenfiaure | —#" Recent Changes

[] subversion poling Lo

Permalinks
@ Build History (trend)

® Last build (£2), 24 min ago
@ #2 1an24,20116:37:380M ® Lost failed build (£2), 24

P P W ® Last unsuccessful build (¥2), 24 min ago

E !fﬂr all E !fﬂr failures
SENG 403 - Winter 2012

\/

P

Changes

* By clicking on changes and then on details we can see
what has changed in the last commit.

@ Changes

Summary

1. Hello World!

Revision 6734 by SND\smnasehi_cp:
Hello World!

' Jtrunk/smn
% Jtrunk/smn/HelloWorld.java
' Jtrunk/build.xml

SENG 403 - Winter 2012

\/

P

Start Build

° We can start a build immediately by clicking on the
“Build Now” link in the Dashboard page.

© The left table labelled Build Queue will display jobs
currently running.

@ Build History (trend) 8 min 46 sec (22) 6.1sec %)

#6 Jan 24,2011 7:25:58 PM
@ #4 Jan24.2011
@ #3 Jan24,2011

Build now
@ #1 1mn24 2011 63149 P

@ #2 jJan24.2011
) for all [for failures

[=]
@ #5 lan24,20117:25

SENG 403 - Winter 2012

\/

Hudson Plugins

* Build notifiers: These plugins supply alternate ways
of issuing notifications about job events -- via Twitter,
IRC, Google Calendar events, and the like.

° Build reports: A series of plugins that create useful
reports based on some form of analysis of your source
code or generated artifacts. For example, the
Cobertura plugin aggregates ongoing coverage reports
generated by your build scripts.

* External site integrations: Plugins that assist in
integrating Hudson with other applications, such as
Jira or Bugzilla.

P

SENG 403 - Winter 2012

\/
Console Output

e If the job is complete this will display the static output
that was generated by the build script; you can click
ENABLE AUTO REFRESH to make Hudson periodically
refresh the content of the page so that you can see output

as i ~roire

P

@ Console Output

 re 67
(trunk] $ cmd.exe /C '"ant.bat && exit 3SERRORLEVELAS™'
Buildfile: C:\.hudson\jobs\SENG 403 Sample\workspace\trunk\build xml

BUILD SUCCESSFUL

P

Hudson Plugins

* Hudson functionality can be extended by installing
plugins

¢ SCM: Plugins that implement Hudson support for
source control systems other than CVS and
Subversion.

¢ Build tools: Plugins that implement additional build
tools, such as MSBuild and Rake. These are
particularly useful if you would like to build non-Java
software in Hudson.

SENG 403 - Winter 2012

\/
Job Stability

* Job state: Figure 27 outlines the symbols for the four
possible states for the most recently executed build of a
job:

e Successful: The build completed and was considered stable.
e Unstable: The build completed and was considered unstable.
e Failed: The build failed.

e Disabled: The job is disabled.

* Job stability: While a job may
build to completion and

Successful [Unstable [Broken [Disabled =
= = generate the target artifacts

@ Q@ @ without issue, Hudson will
assign a stability score to the
build (from 0-100) based on the

P

Figure 27. Job states

e

Figure 28. Job stability

SENG 403 - Winter 2012

post-processor tasks,
implemented as plugins, that
you have set up to implicitly
evaluate stability.

/
A Plugin Example

* We want to use Code Coverage
metrics.

® One plugin that does this
Cobertura.

e It is free, but we need to add
some stuff into the Ant script.

® To add a Cobertura report as a
post build artifact, we need to
create a new job.

* We can copy an existing job and
change the properties.

Job name Temp

© Build a free-style software project
This is the central feature of Hudson. Hu
© Monitor an external job

This type of job allows you to record the
existing automation system. See the doc

© Build multi-configuration project (alpha)
Suitable for projects that need a large i

© Copy existing job
Copy from SENG 403 Sample2

SENG 403 - Winter 2012

/
Code Coverage Reports

* Now when we build the project we can see some
reports in the project home.

Project SENG 403 Sample3

This is an example that shows how to use Hudson.

Code Coverage

Classes sov
Conditionals 100%
Files so%
Lines o

SENG 403 - Winter 2012

/
References and Further Readings

* The classic article on Continuous Integration by Martin
Fowler: http://www.martinfowler.com/articles/
continuousIntegration.html

e The CI book: http://www.amazon.com/Continuous-
Integration-Improving-Software-Reducing/dp/0321336380/
ref=sr_1_2?ie=UTF8&qid=1296008075&sr=8-2

¢ Continuous integration with Hudson: http://
www.javaworld.com/javaworld/jw-12-2008/jw-12-hudson-
ci.html?page=1

SENG 403 - Winter 2012

Using Cobertura

* We should check the appropriate checkboxes in the
“define a new job” screen.

[publish Cobertura Coverage Report

Cobertura xml report pattern «=/dist/coverage-xmi/coverage.xml

This is a file name pattern that can be used to locate the cobertura xml report files (for example with Maven2 use **/target/site/cobertura/coverage
dule root

less you have
the same 25 the workspace root,
Cobertura must be configured to generate XML repores for this plugin to function,
Consider only stable builds]

Include only stable builds, i.e. exclude unstable and failed ones.
Source Encoding Ascl

source.encoding.description
Coverage Metric Targets

Methods - 80 @ o
Lines - 80 @ o
Conditionals - 70 @0

[

Confioure heslh reparting thresholds.

Forthe - - row, lesve blank to use the default value (. 80).
Forthe @ and . rows leave blank to use the default values (i 0)

SENG 403 - Winter 2012

/
Code Coverage Reports

* By clicking on the “Coverage Report” link we can see a
more detailed report.

Code Coverage

Cobertura Coverage Report

Trend
Classes so%
Conditionals 100%
Files 0%
Methods. o
Packages 100%

Project Coverage summary

Hame fosses Conditionals Fles Lines Hethods
Cavertura Coverage Report| S0% [WETI] | 00% [0/8 sow[SR %[GR so% [gEEE]| 0% [wE]
Coverage Breakdown by Package
Name Classes Conditionalz Files Lines Hethods
m e T T — e son [

which case it is relative to the workspace root. Note that the module root s

