
April 11, 2013
1

Strategies for Secure
Software Development

Sydney Pratte, Shena Fortozo, Gellert Kispal, Adesh

Banvait and Alaa Azazi
Department of Computer Science

University of Calgary
Calgary, Canada

sapratte@ucalgary.com, shena.fortozo@gmail.com,
kispalgellert@yahoo.com, adesh911@gmail.com,

alaa.azazi@ucalgary.ca

Naomi Hiebert
Schulich School of Engineering

University of Calgary
Calgary, Canada

numberless1@gmail.com

In this paper we discuss the importance of assuring
software security during development and with the use of
testing and security products. We also discuss some of the
common vulnerabilities in software that result in
insecurities. These vulnerabilities include access control
problems, insecure interaction between components,
timing attacks, buffer overflows, and denial of service
attacks.

Index terms - Software security, development, techniques,
vulnerabilities, testing, tools

I. INTRODUCTION

 In today’s society, software is an omnipresent part
of life. We trust it with everything from holding our money
to helping fly airplanes, and for the most part, it deserves
that trust. Software does a better job of keeping data safe yet
instantly accessible than any conceivable non-computerized
system could ever hope to achieve. However, as more and
more valuable data is stored in computer systems, they
become an ever more tempting target to those who could
benefit from stealing or destroying that data. Businesses, for
example, must store large amounts of sensitive and critical
information on their systems, and it is of vital importance to
keep this data away from prying eyes [11]. Businesses
should also make software security a priority to assure
reliability and integrity for both themselves and their clients.

Individuals, on the other hand, must be ever wary of
attempts at identity theft. Identity theft is the act of stealing
a victim’s personal information such as bank account
numbers, credit card numbers or social security numbers,
and using that information to pose as the victim. If an
attacker gains access to this information it can result in
severe financial problems for the victim [12]. However, if
proper software security measures are taken, personal
information can be protected from these attackers.

Many different strategies have been integrated into
software development methodologies to assure that security
begins at development and continues to the final product.

These strategies are employed through the entire product
lifecycle, from initial requirements gathering all the way to
deployment and maintenance. This paper will discuss two of
these strategies: OWASP’s CLASP and Microsoft’s SDL.
One of the ways these strategies recommend assessing the
security of software is the use of software products that
vigorously test for security holes and identify security
vulnerabilities in your system. We will go into detail about
two of these testing frameworks, namely the Metasploit
project and the W3AF. In order for developers to take pre-
emptive security measures during development and to be
able to create secure software, they must understand
software vulnerabilities. The 2011 CWE/SANS [1] list
identifies 25 of the most dangerous software faults that can
cause vulnerabilities. From this list, we discuss in detail five
examples of software vulnerabilities.

II. DURING DEVELOPMENT AND IN
PRODUCTS

Software security should be part of a project right from

the onset and throughout the development. This section
describes development methods, products, and testing
methods that can be used to assure a secure product.

A. Development Method

The development process of secure software is still by
large a matter of guidelines, strategies and personal
expertise. Such strategies provide guidance in specific areas
of software security such as threat modeling and testing.
During the recent years, researchers have developed a
number of methodologies and techniques that employ the
strategies and guidelines in these practices into integrated
and comprehensive construction processes for secure
software development.

The following section, briefly, discusses two of the
forefront secure software development techniques, namely
Microsoft’s Security Development Lifecycle (SDL) [10]

April 11, 2013
2

and OWASP’s Comprehensive Lightweight Application
Security Process (CLASP) [8]. It presents a high level
introduction to both techniques alongside a description of
the process phases of each technique.

1. MICROSOFT’S SECURITY DEVELOPMENT LIFECYCLE
(SDL)

SDL is a software security assurance process that is
focused on software development [7]. Microsoft has
adopted SDL as a mandatory policy in 2004 in order to
resolve the security concerns that have previously arisen in
its products [10].

The Microsoft SDL consists of a number of security
activities presented in the order they must be implemented
[9]. The activities are categorized into mandatory and
optional activities, and are grouped by the phases of the
software development life cycle (SDLC).

a. Mandatory Security Activities
In order to comply with the Microsoft SDL process,

software must successfully pass the following six
mandatory security activities.

i) Pre-SDL Requirements: Security Training
All team members who are directly involved with the

development of the software must receive appropriate
security training. The training must at a minimum cover the
fundamental concepts of software security such as secure
design, threat modeling, secure coding, security testing, and
privacy.

ii) Phase One: Requirements
During the requirements phase, the development team

performs security requirements gathering, risk assessment
and establishes bug bars in order to plan the integration of
security and privacy into the development process.

iii) Phase Two: Design
The Design phase identifies the design requirements

and the structure of the software product. A core element of
the SDL design phase is threat modeling which aids in the
analysis of security issues in the internal components of the
developed software.

iv) Phase Three: Implementation
In this phase, the development team decides and on and

approves the set of tools that will be used during the
development of the software such as compilers, linkers,
libraries and APIs and assesses the security issues that could
arise as a result of using these tools.

v) Phase Four: Verification
During the verification phase, the software is exposed

to various types of dynamic tests in order to check against
security and privacy specifications defined in the
requirements and design phases.

vi) Phase Five: Release
During the release phase, the development team must

create an incident response plan that identifies the roles of
concerned personnel in case of an emergency. The team
must also perform a Final Security Review (FSR) and
archives all relevant data for future reference [7].

b. Optional Security Activities
Optional security activities are performed when the

security of software is highly critical. These activities
provide an additional level of certainty as well as in-depth
security analysis for certain software components. This
section provides a few examples of such activities.

i) Manual Code Review
Manual code review is mostly focused on the critical

and the most sensitive components of the software and the
security advisor or an expert in the field must perform it.

ii) Penetration Testing
Penetration testing aims to unveil potential security

flaws and vulnerabilities through the simulation of attacks
and the use of dynamic malformed random data.

iii) Vulnerability Analysis of Similar Applications
Investigating reputable vulnerabilities databases and

similar software systems could aid in avoiding potential
security issues during the design and implementation
phases.

2. OWASP’S COMPREHENSIVE LIGHTWEIGHT
APPLICATION SECURITY PROCESS (CLASP)

CLASP is a lightweight software security assurance process
that adopts an easy and effective approach for constructing
secure software [8]. It aims at moving security concerns into
the inception phase of the project by introducing extensions
to the traditional software engineering activities and
providing implementation guidance in certain security areas.
The CLASP process consists of 24 top-level activities that
can be fully or partially incorporated into software that is
being constructed [8]. This paper categorizes and groups
these activities according to their corresponding traditional
software development life cycle (SDLC) phases.

a. Education and Awareness Activities
CLASP stresses that all team members must have adequate
security training, and must be sufficiently familiar with the
project’s security policy. Some of the activities performed in
this phase include providing an institute security awareness
program, and appointing a project security officer.

b. Requirements Gathering and Analysis Activities
During the requirements phase, the team members must

specify the operating requirements so that the impact on the
security of the software can be evaluated. Some of the
activities performed in this phase include identifying the

April 11, 2013
3

project’s global security policy, trust boundaries, user roles
and detail misuse cases.

c. Design Activities
During this phase, the designers must apply the security

principles that were agreed upon to the design of the
software. Some of the activities performed in this phase
include identifying attack surface, researching and assessing
security posture of technology solutions, annotating class
designs with security properties and specifying software-
specific security configuration.

d. Implementation Activities
In this phase, the development team must integrate the

security measures into the actual implementation of the
software. Some the activities performed in this phase
include integrating security analysis into source
management process, implementing interface contracts and
elaborating resource policies and security technologies.

e. Testing and Verification Activities
In this phase, the development team must assess the

likely risks in the system and identify inadequate and
improper security requirements. Some of the activities
performed in this phase include threat modeling, addressing
reported security issues, verifying security attributes of
resources and performing source-level security review and
tests.

f. Deployment Activities
In this phase, the development team provides a method

for validating the integrity of the software, which is done
through code signing.

g. Update and Maintenance Activities
After deployment, the team must continue to examine

the software for potential security flaws and must use the
resulting information to build a reference security guide.

B. Development tools

1. METASPLOIT PROJECT (FRAMEWORK)

Metasploit started as an open source (now owned by
Rapid7) project that provides developers with the ability to
identify security vulnerabilities using penetration testing. It
is used to target vulnerable systems remotely using exploit
code, and is considered one of the more popular frameworks
in exploit development [15]. The framework is primarily
used for finding vulnerabilities in software.

Recently, Metasploit helped researchers highlight

vulnerabilities with Universal Plug & Play (UPnP), which
affects millions of systems connected to the Internet.

Researchers were able to find public IP addresses by
scanning the targeted network and see if they got and
response to UPnP requests. If they were able to find the IP
address, it would give them an entry point into the network.
Attackers can then choose to either attempt to find exploits
in a specific device or, if the SOAP service is exposed,
attempt to write an exploit to shift traffic and steal data from
the user. This sort of penetration testing would allow IT
teams to better fix these cracks and protect them from
hackers [16].

Metasploit has a modular approach in building an
exploit and allows combinations of any exploits with any
payload. This gives more freedom to exploit designers. To
write an exploit:

1. Choose and configure an exploit
2. Check whether the target system is susceptible

to that kind of exploit
3. Choose and configure a payload
4. Encrypt the payload
5. Execute the exploit

Metasploit employs ‘Fuzzing’ techniques to achieve its

goals. Fuzzing is an automated software testing technique
that aims at finding Memory leaks, Assertion Failures and
Exceptions. This is done using invalid and
unexpected/random inputs for the program. We can think of
fuzzing being employed in a fashion similar to black-box
testing, the exploit writers have to set up a series of tests
which can be executed when needed. It is a common
technique used to find security problems in software and
computer systems. There are two categories of fuzzing
Programs:

1. Mutation Based – Mutate existing data samples by
flipping bits or changing test suites and pass them
as input streams to the program.

2. Generation Based – Define new test data based on
models of the input.

The efficiency of fuzzing depends on the extent of code

it can cover and the timeframe allotted for the test. Fuzzing
is usually limited to finding simple bugs in the system, but
helps designers in finding such bugs, which they might have
overlooked or are unaware of.

2. W3AF – WEB APPLICATION ATTACK AND AUDIT
FRAMEWORK

w3af is a open source vulnerability scanner and

exploitation tool for web applications and web sites. It helps

April 11, 2013
4

researchers identify vulnerabilities like SQL Injection,
Cross-Site Scripting, guessable credentials, unhandled
application errors and PHP misconfigurations. It employs a
variety of tools including fuzzing testing.

w3af is divided into ‘Core’ and ‘plugins’ parts. Core
coordinates the process with the plugins, and are configured
and executed through a user interface [18]. There are over
130 plugins that are categorized into Discovery/Crawl,
Audit, Grep, Attack, Output, Mangle, Evasion and Brute
force.

A basic example of w3af is about SQL injections.
Discovery/Crawl and Brute Force plugins are used to
identify various forms and queries within the target web site
and are followed by audit plugins that will employ fuzzing
techniques to find SQL injections. Reports are generated for
the user using output plugins.

III. VULNERABILITIES

While the software industry is very prosperous business,
it too has its drawbacks and dangers. There have been many
publicized attacks and mistakes that developers made, which
got exploited by hackers. Earlier software was seen as an
unreliable tool intended for activities that weren’t considered
serious or profitable. Activities such as blogging or gaming
were considered to be insignificant. However, as developers
started focusing on security and ensuring secure software,
major corporations such as banks became confident and
invested in the industry. Below are some examples of
mistakes and vulnerabilities that software is subject to.

A. Access Control Problems

Access control is the authentication of who is
allowed to do exactly what in your system. Many software
security vulnerabilities arise from deficiencies or lack of
access control. Some examples of access control problems
are missing authentication, incorrect authentication and
allowance of unlimited or numerous authentication attempts.

Providing no authentication can lead to major

software security vulnerabilities because when there are no
access control checks, users can access resources and
perform actions that they should not be able to [1]. Software
must provide authentication for functionality that requires
user identity or accesses a significant amount of resources
[1]. However, when designing a system, simply adding
separate user privileges can protect this functionality. In the
following Objective-C example the checkBankAccount()
method does not check who is checking the bank account
[1]:

In this simple example the user’s permissions should be
authorized to ensure that the user checking this bank
account object has the authority to view its balance. The
following example shows how the code might be modified
to provide authentication [1].

Part of the missing authentication access control

problem is incorrect authentication. While missing
authentication is more serious security vulnerability,
incorrect authentication can also be an issue [1]. Incorrect
authentication is when access control is applied to certain
resources or actions but are implemented in a way that can
be bypassed [1]. That is, when the resource or action that is
accessed by the software does not correctly perform the
authorization check. Both missing and incorrect
authentication result in the same issue, users may be able to
access resources or perform actions that they should not be
able to do.

 Another access control problem that results in

software security vulnerabilities is the allowance of
unlimited or numerous authentication attempts. Without a
reasonable limit on the number of authentication attempts
attackers can use brute force techniques to repeatedly guess
different passwords until they succeed. Software is
susceptible to this attack if it does not limit the amount of
failed attempts in a short amount of time. A real world
example of this issue is in 2009 an attacker who gained
administrative access by taking advantage of this
vulnerability accessed thirty-three celebrities and politicians
Twitter accounts. The following example in Objective-C
illustrates this vulnerability [1]

April 11, 2013
5

One possible solution for this example is to modify the
authentication loop with a counter on the amount of
attempts a user has performed. Once the counter reaches a
reasonable maximum attempt value the system should
handle the error [1]. The following code shows a method
that checks a global count variable against a maximum
attempt number:

If the count exceeds the maximum, the method will
return “NO” and the calling code must appropriately handle
this situation. (Note that unlike in this example, many
systems allow a small number of further attempts after a
“cooldown” period have passed).
.

B. Insecure Interaction Between Components

This form of vulnerability arises from insecure ways of
sending and receiving data from separate components,
modules, programs, processes, threads, or systems. These
mostly deal with user input and commonly attack database-
driven applications. SQL injection and Cross-Site Scripting
are two common examples of these types of weaknesses in
software. According to the 2011 CWE/SANS [1] list, both
are found on the top 25 most dangerous software errors that
cause vulnerabilities.

1. SQL INJECTION

SQL injection happens when there is improper

neutralization of elements that could alter an SQL statement.
Those that have user-controllable inputs are particularly the
ones that cause harm. Moreover, these changes can modify
the query logic without being detected. An attacker can
leverage this vulnerability by masking their SQL commands
in a program’s SQL code.

There are several consequences of successfully receiving
an SQL injection [1]. One of the most common is the loss of
confidentiality. Data could be changed or deleted all at once.
Furthermore, this type of weakness could provide a gateway
to steal or corrupt data. It may also create holes in the
application’s security by compromising access to system
itself.

There are many variations of techniques to perform an
SQL injection attack [1]. The most common mechanisms are
injection through user input, cookies, and server variables.
However, the use of second-order injection can be more
difficult to detect and prevent, as the point of injection is
different from the point where the attack actually manifests
[4]. This is due to the fact that the data that may have past
sanitation at one point may result in an attack when used in a
different context or query. For example, the attacker could
input ‘ OR 1 OR ‘ as their “username” when creating some
sort of account. This doesn’t necessarily cause a problem in
the insertion query and therefore passes. This username is
now stored in the database. However, in the context of
another SQL query, which may be called later on, could alter
the code logic due to the encapsulated OR logic symbol in
the text field. In this case, the example would create two
WHERE clauses when calling the attacker’s username thus
nullifying what comes next in the statement. This could alter
the query logic entirely, weakening the integrity of the
database.

The following example shows an SQL injection by dropping
a table when the code logic was only to select certain fields
depending on the user's email. The point of the attack was
the user input "x'; DROP TABLE members; --", which is
emphasized below:

April 11, 2013
6

Prevention of an SQL attack can be done in both the
architecture design and implementation phases [1]. The most
evident, yet sometimes forgotten or done incorrectly, is the
practice of defensive coding [4]. This entails cleaning and
validating input and can be done by setting length limits on
input fields, checking and setting data types, escaping special
characters such as apostrophes and colons, and the use of
alias and unique field names for information hiding.

There are at least two mitigation methods [2]. One is
verifying that the database user should only have the
minimum number of privileges required to run the
application. This allows the amount of data that can be
attacked to be isolated by limiting the user’s access to other
tables and/or commands. The other method is further
encrypting the data stored. For example, passwords can be
stored in a “salted hash” thus further securing the account
information.

2. CROSS-SITE SCRIPTING

On the other hand, Cross-Site Scripting (XSS) [1] is a

vulnerability found in web applications that enables an
attacker to embed malicious code into a legitimate web page.
A user visiting this site is then fooled, and usually unaware,
of executing the script on their machine.

Attackers may use this weakness by compromising
private information, manipulate or steal cookies, or create a
request on behalf of the victim [5]. This can be more
dangerous if the victim has administrative access to a
website. Additionally, the attacker could possibly take
control over the victim’s system, which is sometimes known
as “drive-by hacking” [1]. Twitter and Facebook are
examples of prominent sites that have been previously hit by
this vulnerability [3].

There are various ways for an XSS attack to occur. One
way is when the application does not sanitize or improperly
sanitizes data from a web request or user input. Or, it could
come from an external source such as dynamically and
unknowingly generating a web page with malicious data [6].
In any case, XSS violates the web browser’s “same-origin”
policy [1], which says that a document or script from one
origin should not interact with a resource from another
origin.

There are three main types of XSS attacks, two of which
has the injection being performed by the server. The first is
called Non-Persistent or Reflected XSS [1]. This deals with
the data sent through HTTP request being reflected back
through an HTTP response. Typically, an XSS-tainted URL
is sent to the user by means of email, publicly posted, etc.
The victim would unknowingly be the supplier of dangerous
content to the web application. The harmful script would be
executed and reflected back to the user. The other type of
common server-based XSS attack is called Persistent or
Stored XSS [1]. This describes when injected code is stored

on the target, usually on a database. Each request to view
executes the malicious code. They usually occur in places
that allow user input such as message boards and profiles.
However, the third kind of XSS performs the injection on the
victim’s client. It is called DOM-based XSS or type-0 XSS
[3]. This succeeds by modifying the victim’s browser such
that the page itself does not change. However, due to the
modification, the page executes differently in the
background.

There are various ways to help prevent an XSS attack.
Proper escaping and quoting is the most effective solution.
Another method is to perform security checks on both client
and server side [1]. Specifying a proper character encoding
scheme for every web page generated such that the web
browser doesn’t treat certain sequences as special when they
are not implemented to be so. One other way is to use a
whitelist of acceptable inputs as a strategy of validation.

SQL injection and Cross-Site Scripting are two of many
ways to exploit vulnerabilities through the use of insecure
interactions between components.

C. Timing Attack
A timing attack is a form of attempt to compromise a

system by analyzing the time taken to execute a
cryptographic algorithm [13]. Many complicated
cryptographic algorithms are vulnerable to such attacks
however in order to gain a good understanding of this
vulnerability let’s take a look at a simple code example
below.

By looking at this function no errors can be observed. It
is a simple string comparison operation, which only grants a
user access if all the characters in the input string match the
characters in the user’s password. However it is important to
note the lower level details for this operation. Most
compliers will do the following. Strings are represented as
arrays of characters, so the if statement will iterate through
both arrays and compare each character in the input string to
the user’s password. As soon as one discrepancy is found
the if-statement will evaluate to false and the function
returns. Consider input string “bcde” and password “abcd”.
With this input the function will return false right away
because it will compare “a” to “b” and find that they’re not
equal. However if the input string is “abce” and password
“abcd” the function will only return false when it iterates to
the last character. From a time perspective, it will take
longer for second input string to return false than the first.
These comparison operations take very small amount of
time (a few nanoseconds) and are not noticeable to humans;

April 11, 2013
7

however, all operating systems have a way of keeping track
of time.

The attacker has the ability to brute force the password
and as the response time increases it means that the input
string closer resembles the user’s password. Usually brute
force algorithms that guess passwords have an exponential
time complexity. However knowing that a system is
vulnerable to timing attacks the time complexity can be
reduced to linear time, because the attacker no longer has to
guess every possible string, after each guess the attacker
learns if they are getting closer to the password. Therefore
such attacks can be executed within hours or even minutes.

Knowing that one’s password can be guessed within
minutes is a scary concept; however timing attacks only
work in very specific conditions. First of all this specific
attack cannot be executed over the network, meaning it is
restricted to local systems. This is because the response time
over a network is not conclusive. If one pings a server the
response time for each ping is different due to network jitter.
Since timing attacks reply on a very precise time
measurement (to the millisecond) it is considered to be
impossible to accomplish over networks. Timing attacks
also assume that one has an unlimited number of attempts to
try and guess the password.

There are many ways to prevent against this
vulnerability. One could implement a cool-down rule where
after a certain number of attempts the account locks.
Another solution would be implementing a password check
function that iterates to the end of the input string for every
trial, therefore the attack is not given any clues whether
they’re getting closer to the password. That the input string
closer resembles the user’s password.

D. Buffer Overflow
Amongst the most common software vulnerabilities are

buffer overflows. This is because C/C++ does not provide
build-in protection against accessing memory outside of
particular bounds. To grasp the idea of this concept below is
a simple example.

Let aWord be an 8 byte array of characters and
“number” a 16-bit integer (2 byte integer). To keep it simple
let’s assume that both variables are stored right next to each
other in memory, so it is easy to visualize. The following
diagram denotes how memory may look like using blocks to
represent 1 byte of data [14].

figure 1

figure 2

Characters are encoded using ASII so the letter “S”
would appear as a 73, however for simplicity let’s ignore
that momentarily. If the user inputs “SOMETHING” as
string, it is greater than 8 bytes long, however the computer
will put each character into their respective memory slots,
demonstrated in figure 1. However when it reaches the end
of the input it will result in overwriting the value in
“number” as demonstrated in figure 2. Since our program is
very small and we do not rely on the value of number, this
exploit would make no difference. However let’s say that
“number” holds someone’s account balance or other
personal information like SIN number then this exploit
would cause a major threat to people’s privacy. Proper

April 11, 2013
8

bounds checking would provide an easy fix for this
vulnerability.

E. Denial of Service
While the above attacking methods were meant to

penetrate systems and possibly destroy valuable data denial
of service attacks are different in that perspective. As the
name suggests this attack is only able to deny service to
legitimate users, attackers do not gain access to the system.
The basic flow of the attack [19]:

− the attacker makes a request to interact with the
server (mostly likely from a spoofed IP address)

− the server replies and spawns a thread for
interaction

− the attacker never replies, therefore the thread
keeps hanging

If the attacker is able to send thousands of requests in a
short period of time the server slows down considerably or
even crashes entirely, since it is dealing with useless/fake
interactions.

Denying service has no real value unless the particular
service is important. For example if attackers are able to
launch a Denial of Service on a bank website then the
damage could result in millions of dollars due to the fact
that many people heavily rely on system. Even a pizza
delivering company can have major losses if hackers make
their online orders inaccessible for legitimate users. In
conclusion, while denial of service does not propose threat
to user’s privacy, it can do a fair amount to damage.

IV. CONCLUSION

Looking at software from a user perspective, one
might not realize the complexity behind it. Security is a non-
functional requirement, and tends to be largely transparent
to users; however it can have a major effect on the end user.
As software becomes more and more pervasive in our lives,
more users will be exposed to the benefits and risks that
come along with it. Engineers and designers must ensure
that all software produced has a reasonable amount of
attention paid to security. We must also avoid focusing too
narrowly on security above all else, since security often
comes at a cost not only in monetary terms but also in trade-
offs with other important non-functional requirements.

Fortunately, there are some very well-understood
ways to ensure that software is developed in a secure and
reasonable manner. Use of security-aware development
techniques such as SDL or CLASP allow security to be
something built into the product at every stage of
development. Tools such as Metasploit or W3AF allow

security to be robustly tested, making developers aware of
any potential faults or vulnerabilities. Finally, simply being
aware of several of the more common attack vectors and
how to avoid or confound them allows software developers
to thwart attacks with a minimum of effort.

REFERENCES

[1] The MITRE Corporation, "(The MITRE
Corporation, SANS Institute, 2011)" [online], Sept.
2011 [cited Feb. 22, 2013], available from World
Wide Web: http://cwe.mitre.org/top25/

[2] Colin Angus Mackay, " SQL Injection Attacks and
Some Tips on How to Prevent Them" [online],
Code Project, Jan. 2005 [cited Feb. 22, 2013],
available from World Wide Web:
http://www.codeproject.com/Articles/9378/SQL-
Injection-Attacks-and-Some-Tips-on-How-to-Prev

[3] Wikipedia, "Cross-site Scripting" [online], [cited
Feb. 23, 2013], available from World Wide Web:
http://en.wikipedia.org/wiki/Cross-site_scripting

[4] William G.J. Halfond, Jeremy Viegas, and
Alessandro Orso, "A Classification of SQL
Injection Attacks and Countermeasures" [online],
[cited Feb. 23, 2013], available from World Wide
Web:
http://www.cc.gatech.edu/~orso/papers/halfond.vie
gas.orso.ISSSE06.pdf

[5] Acunetix, “What is Cross Site Scripting?" [online],
[cited Feb. 23, 2013], available from World Wide
Web:
http://www.acunetix.com/websitesecurity/cross-
site-scripting/

[6] Paul Lee, “Cross-site Scripting" [online], IBM,
Sept. 2002 [cited Feb. 23, 2013], available from
World Wide Web:
http://www.ibm.com/developerworks/tivoli/library/
s-csscript/

[7] Johan Gr´egoire, Koen Buyens, Bart De Win,
Riccardo Scandariato, Wouter Joosen. DistriNet,
Department of Computer Science, K.U.Leuven.
“On the Secure Software Development Process:
CLASP and SDL Compared”, Celestijnenlaan
200A, B-3001 Leuven, Belgium

[8] OWASP Foundation, "OWASP CLASP v1.2
Comprehensive, Lightweight Application Security
Process", OWASP. November 9, 2007 [cited
February 22, 2013], available from World Wide

April 11, 2013
9

Web:
https://www.owasp.org/index.php/Category:OWA
SP_CLASP_Project

[9] Noopur Davis, "Secure Software Development Life
Cycle Processes: A Technology Scouting Report",
Carnegie Mellon, Software Engineering Institute.
December 2005.

[10] Microsoft Corporation, "Microsoft Security
Development Lifecycle: Simplified
Implementation of the Microsoft SDL" [online],
November 4, 2010 [cited February 26, 2012],
available from World Wide Web:
http://www.microsoft.com/sdl

[11] Corr S. Pondent, "Importance of Security in
Software Systems" [online], n.d. [cited Feb. 22,
2013], available from World Wide Web:
http://www.ehow.com/facts_7528821_importance-
security-software-systems.html

[12] Milton Kazmeyer, "Why is Security of Computer
Systems Important?" [online], n.d. [cited Feb. 26,
2013], available from World Wide Web:
http://www.ehow.com/facts_7528821_importance-
security-software-systems.html

[13] Wikipedia, "Timing Attack" [online], [cited Feb.
26, 2013], available from World Wide Web:
http://en.wikipedia.org/wiki/Timing_attack

[14] Wikipedia, "Buffer Overflow" [online], [cited Feb.
27, 2013], available from World Wide Web:
http://en.wikipedia.org/wiki/Buffer_overflow

[15] Sectools.org, “Top 125 Network Security Tools”
[online], December 7, 2012 [cited February 27,
2013], available from World Wide Web:
http://sectools.org/tag/sploits/

[16] Tom Brewster, “How Attackers Can And Will
Exploit UPnP Flaws” [online], January 30, 2013
[cited February 27, 2013], available from World
Wide Web:
http://www.techweekeurope.co.uk/news/how-
attackers-will-exploit-upnp-105868

[17] Darren Pauli, “Search Phone Calls for Keywords
with Metasploit” [online], February 6, 2013 [cited
February 27, 2013] available from World Wide
Web:
http://www.scmagazine.com.au/News/331343,searc
h-phone-calls-for-keywords-with-metasploit.aspx

[18] Sector, “A framework to 0wn the Web” [online],
2009 [cited February 27, 2013], available from
World Wide Web:

http://www.sector.ca/presentations09/w3af%20in%
20150%20minutes%20-%20part%201.pdf

[19] Wikipedia, “Denial of Service Attack” [online],
[cited Mar. 25, 2013], available from World Wide
Web:
http://en.wikipedia.org/wiki/Denial-of-
service_attack

