ITEM		Value (shaded boxes left blank)	
		$0 . .4$	$\{\nu, x, ?\}$
A	: (S, T)		
S	: (Prob, \{yes,no,?\}, $\mathrm{b}_{1}, \ldots \mathrm{~b}_{\mathrm{n}}$), $\mathrm{n}>=0$		
Prob	: ${ }^{\text {a }}$		
	$=$		
Altern	: Prob+		
	=		
T	: SxS		
	$=\{(\mathrm{s} 1: \mathrm{S}, \mathrm{s} 2: \mathrm{S}) \mid \operatorname{Erw}(\mathrm{s} 1, \mathrm{~s} 2)\}$		
Erw	$\operatorname{Erw}($ (pr,?), (pr,yes)), if pr is solved		
	$\operatorname{Erw} \vee((\mathrm{pr}, ?)$, (pr,no)), if pr is unsolvable		
	Erw((pr,?), (pr,?,(pr1,?),...,(prn,?))), if Altern(pr,pr1,...,prn) holds		
	$\operatorname{Erw}\left((\mathrm{pr}, ?, \mathrm{~b} 1, \ldots, \mathrm{bn}),\left(\mathrm{pr}, ?, \mathrm{b1} 1^{\prime}, \ldots, \mathrm{bn}\right.\right.$ ')), if for an i: Erw(bi,bi') and bj = bj' for $\mathrm{i}=\mathrm{j}$		
solved	=		
unsolvable	$=$		
P	: (A, Env, K)		
Env	$=$		
K	: S x Env \rightarrow S		
	$=\mathrm{K}(\mathrm{s}, \mathrm{e})=\mathrm{s}^{\prime}$ if $\left(\mathrm{s}, \mathrm{s}^{\prime}\right) \in \mathrm{T}$		
fleaf	: S x Env \rightarrow Nat		
	$=$		
ftrans	: S x Env \rightarrow S		
	$=$		
Ins	: (s0, G)		
s0	=		
G	: S -> \{yes,no\}		
	$=\mathrm{G}(\mathrm{s})=$ yes, iff $\mathrm{s}=(\mathrm{pr}$ ',yes) $\vee \mathrm{s}=(\mathrm{pr}$ ',?,b1, ..,bn), $\mathrm{G} \vee(\mathrm{bi})=$ yes for an $\mathrm{i} \vee \mathrm{All}$ leafs of s have either the sol-entry no or cannot be processed using Altern		
Tree structure conforms to specification			
Tree is correct representation of the specific problem			
Tree is complete (or reasonably so)			
		There is specifically no totals of these columns.	

The following questions are informed (not dictated) by the table above. These answers dictate the mark, not the table above.

Notes:

Column "0..4"
$0=$ not done, left out, or dead wrong
1 = as prose, not well described, or a bad idea
2 = as prose, nominally correct
3 = includes logic statement, some errors or misunderstandings
4 = brilliant
There MUST be some ≥ 2 's in this column in order to get a "C"
Column " $\{\boldsymbol{\sim}, \boldsymbol{x}, ?\}$ " Expectations are that all or at least most of these are \boldsymbol{V}
A "C" minimum on all problems in the exam is required to get a " C " on the exam as the exam as a whole.

		Value (shaded boxes left blank)	
ITEM			
		$0 . .4$	$\{\boldsymbol{V}, \mathrm{x}, \mathrm{?}\}$
A	: (S,T)		
S	: (Prob, \{yes,?\}, $\mathrm{b}_{1}, \ldots \mathrm{~b}_{\mathrm{n}}$), $\mathrm{n}>=0$		
Prob	$:$:		
	$=$		
Div	: Prob+		
	=		
T	: SxS		
	$=\left\{(\mathrm{s} 1: \mathrm{S}, \mathrm{s} 2: \mathrm{S}) \mid \operatorname{Erw}(\mathrm{s} 1, \mathrm{~s} 2) \vee \operatorname{Erw}^{*}(\mathrm{~s} 2, \mathrm{~s} 1)\right\}$		
Erw	$\operatorname{Erw}((\mathrm{pr}$, ?), (pr,yes)), if pr is solved		
	$\operatorname{Erw}($ (pr,?), (pr,?,(pr1,?), ..,(prn,?)), if Div(pr,pr1, ..,prn) holds		
	$\operatorname{Erw}\left((\mathrm{pr}, ?, \mathrm{~b} 1, \ldots, \mathrm{bn}),\left(\mathrm{pr}, ?, \mathrm{~b} 1^{\prime}, \ldots, \mathrm{bn}\right.\right.$ ')), if for an i: Erv(bi,bi') and bj = bj' for $\mathrm{i}=\mathrm{j}$		
	Erw^ $\subseteq E r w^{*}$ and $E r w^{*}($ pr, $\left., ?, \mathrm{~b} 1, \ldots, \mathrm{bn}),\left(\mathrm{pr}, ?, \mathrm{~b} 1^{\prime}, \ldots, \mathrm{bn}{ }^{\prime}\right)\right)$, if for all i either E Erw $^{*}\left(\mathrm{bi}, \mathrm{bi}{ }^{\prime}\right)$ or $\mathrm{bi}=$ bi' 1 holds		
solved	$=$		
P	: (A, Env, K)		
Env	$=$		
K	: S x Env \rightarrow S		
	$=\mathrm{K}(\mathrm{s}, \mathrm{e})=\mathrm{s}^{\prime}$ if $\left(\mathrm{s}, \mathrm{s}^{\prime}\right) \in \mathrm{T}$		
$\mathrm{f}_{\text {leaf }}$: S x Env \rightarrow Nat		
	$=$		
ftrans	: S x Env \rightarrow S		
	$=$		
Ins	: (s0, G)		
s0	$=$		
G	: S -> \{yes,no\}		
	$=\mathrm{G}(\mathrm{s})=$ yes, iff $\mathrm{s}=\left(\mathrm{pr}\right.$ ',yes) $\mathrm{Vs}=\left(\mathrm{pr} r^{\prime}, ?, \mathrm{~b} 1, \ldots, \mathrm{bn}\right), \mathrm{G}(\mathrm{b} 1)=\ldots=\mathrm{G}(\mathrm{bn})=$ yes and the solutions to $\mathrm{b} 1, \ldots, \mathrm{bn}$ are compatible with each other or there is no transition that has not been tried out already		
Tree structure conforms to specification			
Tree is correct representation of the specific problem			
Tree is complete (or reasonably so)			
		There is specifically no totals of these columns.	

The following questions are informed (not dictated) by the table above. These answers dictate the mark, not the table above.

The student understands the paradigm:	no	unsatisfactory	uncertain	A probably	definitely
The specific problem was solved:	unsatisfactorily	A poorly	reasonably	correctly	brilliantly
	Minimum requirement for a "C"				

Notes:

Column "0..4"	$0=$ not done, left out, or dead wrong
	1 = as prose, not well described, or a bad idea
	2 = as prose, nominally correct
	3 = includes logic statement, some errors or misunderstandings
	There MUST be some ≥ 2 's in this column in order to get a "C"
Column " $\{\boldsymbol{\downarrow}, \mathbf{x}, ?$]"	Expectations are that all or at least most of these are \boldsymbol{V}
A "C" minimum o the exam as a wh	problems in the exam is required to get a " C " on the exam as

		Value (shaded boxes left blank)	
ITEM			
		$0 . .4$	$\{\nu, x, ?\}$
A	: (S,T)		
S	$: 2^{\text {F }}$		
F	: set of facts		
fact	:		
Ext	$:\{A \rightarrow B \mid A, B \subseteq F\}$: set of extension rules		
	= (list one or more ext operators here)		
T	: SxS		
	$=\left\{\left(\mathrm{s}, \mathrm{s}^{\prime}\right) \mid \exists \mathrm{A} \rightarrow \mathrm{B} \in \mathrm{Ext} \cdot \mathrm{A} \subseteq \mathrm{s} \wedge \mathrm{s}^{\prime}=(\mathrm{s}-\mathrm{A}) \cup \mathrm{B}\right\}$		
P	: (A, Env, K)		
Env	$=$		
K	: S x Env \rightarrow S		
	$\begin{aligned} & \text { = K(s,e) }=(s-A) \cup B \text { where } A \rightarrow B \in \operatorname{Ext} \wedge A \subseteq s \wedge \forall A^{\prime} \rightarrow B^{\prime} \in \operatorname{Ext} \mid A^{\prime} \subseteq s \cdot \\ & \text { fWert(A,B,e) } \leq \text { fWert }\left(A^{\prime}, B^{\prime}, e\right) \wedge A \rightarrow B=\operatorname{fselect}\left(\left\{A^{\prime} \rightarrow B^{\prime}\left\|\forall A^{\prime \prime} \rightarrow B^{\prime \prime} \in \operatorname{Ext}\right\| A^{\prime \prime} \subseteq s\right.\right. \\ & \left.\left.\left.\bullet \text { fWert(} A^{\prime}, B^{\prime}, e\right) \leq \text { fWert }\left(A^{\prime \prime}, B^{\prime \prime}, e\right)\right\}, e\right) \end{aligned}$		
$\mathrm{f}_{\text {wert }}$	$: 2^{\mathrm{F}} \times 2^{\mathrm{F}} \times$ Env \rightarrow Nat		
	$=$		
$\mathrm{fse}_{\text {seect }}$	$: 2^{2 F \times 2 F} \times$ Env $\rightarrow 2^{F} \times 2^{F}$		
	$=$		
Ins	: (s0, G)		
s0	= (type is $2^{\text {F }}$)		
G	: S -> \{yes,no\}		
	$=\mathrm{G}(\mathrm{s})=$ yes, iff $\mathrm{s}_{\text {goal }} \subseteq \mathrm{s} \vee$ there is no extension rule applicable in s		
Sgoal	$=\left(\right.$ type is $2^{\text {F }}$)		
Diagram conforms to specification			
Diagram is correct representation of the specific problem			
Diagram is complete (or reasonably so)			
		There is specifically no totals of these columns.	

The following questions are informed (not dictated) by the table above. These answers dictate the mark, not the table above.

| The student understands the paradigm: | no | unsatisfactory | uncertain | probably | definitely |
| ---: | :--- | :---: | :---: | :---: | :---: | :---: |
| The specific problem was solved: | unsatisfactorily | poorly | reasonably | correctly | brilliantly |

Notes:

Column "0..4"
$0=$ not done, left out, or dead wrong
1 = as prose, not well described, or a bad idea
2 = as prose, nominally correct
3 = includes logic statement, some errors or misunderstandings
4 = brilliant
There MUST be some ≥ 2 's in this column in order to get a "C"
Column " $\{\boldsymbol{\cup}, \boldsymbol{x}, ?\}$ " Expectations are that all or at least most of these are \boldsymbol{V}
A " C " minimum on all problems in the exam is required to get a " C " on the exam as the exam as a whole.

