
CASA USER MANUAL

Rob Kremer
Department of Computer Science

University of Calgary
2500 University Dr.

Calgary, Alberta, Canada, T2N 1N4
Email: kremer@cpsc.ucalgary.ca

July 21, 2014

Abstract

CASA (Collaborative Agent Systems Architecture) is a framework for writing collaborative agents. CASA
aims to support many different agent conversational paradigms, such as social commitment, BDI (Belief,
Desire, Intention) and ad hoc models, and to support various standards such as the FIPA standard. But
CASA also aims to avoid forcing the programmer to commit to any particular paradigm. This paper
summarizes the structure of agents as well as the basic processing tasks of agents at runtime.

1

Contents

1 Introduction . 7
2 Basic agent structure . 7
3 Basic types of agents . 7

3.1 AbstractProcess . 8
3.2 TransientAgent . 8
3.3 Agent . 9
3.4 LAC . 9
3.5 CooperationDomain . 9

4 Agent activity . 10
4.1 Events and handling threads . 10
4.2 Agent initialization . 12
4.3 The event loop . 13
4.4 Exiting . 17

5 Ontology . 17
5.1 OWL2 Ontology . 18
5.2 CASA Native Ontology [Deprecated] . 18
5.3 CASA Ontologies . 25

6 Knowledge Base . 25
7 Messages . 26
8 Commitments . 27

8.1 Social commitment operators . 28
9 Policies . 29

9.1 Policy Specification . 30
9.2 Policy Execution . 31

10 Conversations . 32
10.1 Conversation specification . 35

11 Scripting language: Lisp . 37
11.1 Ontologies . 38
11.2 Initialization . 39
11.3 Custom Lisp Operators . 41

12 Observers . 43
13 User Interfaces . 44

13.1 The Default GUI . 44
14 Security . 45
15 Persistence . 45

2

CASA USER MANUAL CONTENTS

16 Debugging/Logging (Trace) . 46
16.1 Specifying Trace Tags . 46
16.2 Using println() . 47
16.3 Turning on tracing . 48
16.4 Trace file format . 48

17 Adding extensions . 48
17.1 Code extensions . 49
17.2 Tab extensions . 50
17.3 Lisp-Script Extensions . 50

Appendices 53
A Searching for Resources . 53
B Preference Settings . 53
C Matching Operators (event descriptors) . 54
D Properties, Parameters. Persistence, and Options . 54
E Command Line Qualifiers . 55
F Lisp Commands . 56

F.1 ? . 56
F.2 A2L . 57
F.3 ACT . 57
F.4 ACT.ACTION-AT . 57
F.5 ACT.SIZE . 57
F.6 ACT2LIST . 58
F.7 ACT2STRING . 58
F.8 ADD-SINGLE-NUM-VALUE-KBFILTER . 58
F.9 AGENT-IDENTIFIER . 58
F.10 AGENT.ASYNC . 59
F.11 AGENT.CREATE-EVENT-OBSERVER-EVENT . 59
F.12 AGENT.DELETE-POLICY . 60
F.13 AGENT.EXIT . 60
F.14 AGENT.FIND-FILE-RESOURCE-PATH . 60
F.15 AGENT.GET-AGENT . 60
F.16 AGENT.GET-AGENTS-REGISTERED . 61
F.17 AGENT.GET-AGENTS-RUNNING . 61
F.18 AGENT.GET-CLASS-NAME . 61
F.19 AGENT.GET-POLICIES . 62
F.20 AGENT.GET-URL . 62
F.21 AGENT.GETUSEACKPROTOCOL . 62
F.22 AGENT.INSTANTIATE-CONVERSATION . 63
F.23 AGENT.ISA . 63
F.24 AGENT.JOIN . 63
F.25 AGENT.LOAD-FILE-RESOURCE . 64
F.26 AGENT.MAKE-CONVERSATION-ID . 64
F.27 AGENT.MESSAGE . 64
F.28 AGENT.NEW-AGENT . 65
F.29 AGENT.NEW-INTERFACE . 66

July 21, 2014 Knowledge Science Group, University of Calgary 3 of 108

CASA USER MANUAL CONTENTS

F.30 AGENT.OPTIONS . 67
F.31 AGENT.PAUSE . 67
F.32 AGENT.PING . 67
F.33 AGENT.PRINTLN . 68
F.34 AGENT.PUT-POLICY . 68
F.35 AGENT.REPLY . 68
F.36 AGENT.RESET-DEF-FILE-SYSTEM-LOCATIONS . 69
F.37 AGENT.RESUME . 69
F.38 AGENT.SEND . 69
F.39 AGENT.SEND-QUERY-AND-WAIT . 70
F.40 AGENT.SEND-REQUEST-AND-WAIT . 70
F.41 AGENT.SHOW-COMMITMENTS . 70
F.42 AGENT.SHOW-CONVERSATIONS . 71
F.43 AGENT.SHOW-EVENT-QUEUE . 71
F.44 AGENT.SHOW-EVENTQUEUE . 71
F.45 AGENT.STEP . 72
F.46 AGENT.STOP-EVENT-OBSERVER-EVENT . 72
F.47 AGENT.TELL . 72
F.48 AGENT.TRANSFORM . 73
F.49 AGENT.TRANSFORM-STRING . 73
F.50 CALL-GC . 73
F.51 COMPARETO . 74
F.52 CONSEQUENT-CLASS . 74
F.53 CONSTRAINT . 74
F.54 CONVERSATION . 75
F.55 CONVERSATION.EXECUTE-ACTION . 75
F.56 CONVERSATION.GET-STATE . 76
F.57 CONVERSATION.SET-ACTION . 76
F.58 CONVERSATION.SET-STATE . 76
F.59 DECLINDIVIDUAL . 77
F.60 DECLMAPLET . 77
F.61 DECLONTOLOGY . 77
F.62 DECLRELATION . 77
F.63 DECLTYPE . 77
F.64 ECHO . 77
F.65 EVENT-DESCRIPTOR . 77
F.66 EVENT.GET . 78
F.67 EVENT.GET-MSG . 78
F.68 EVENT.GET-MSG-OBJ . 78
F.69 EVENT.GET-OWNER-CONVERSATION-ID . 79
F.70 FIPA-FOLLOWS . 79
F.71 FIPA-PRECEEDS . 79
F.72 FIRE-EVENT . 80
F.73 GET-HOST-NAMES . 80
F.74 GET-INETADDRESSES . 80
F.75 GET-OBJECT . 81

July 21, 2014 Knowledge Science Group, University of Calgary 4 of 108

CASA USER MANUAL CONTENTS

F.76 GET-ONTOLOGY . 81
F.77 GET-RESIDENT-ONTOLOGIES . 81
F.78 GET-SYSTEM . 81
F.79 GET-THREAD . 81
F.80 GETONTOLOGY . 82
F.81 GETONTOLOGYENGINE . 82
F.82 HASCONVERSATION . 82
F.83 HELP . 83
F.84 instance-of . 83
F.85 isa . 83
F.86 isa-ancestor . 83
F.87 isa-child . 83
F.88 isa-descendant . 83
F.89 isa-parent . 83
F.90 isequal . 83
F.91 ISPARENT . 83
F.92 KB.ARG-DESC . 84
F.93 KB.ASSERT . 84
F.94 KB.DEFINE-ONT-FILTER . 84
F.95 KB.GET-VALUE . 85
F.96 KB.QUERY-IF . 85
F.97 KB.QUERY-REF . 86
F.98 KB.SHOW . 86
F.99 LOAD-FILE-RESOURCE . 86
F.100 LOAD-JAR . 86
F.101 MSGEVENT-DESCRIPTOR . 87
F.102 NEW-URL . 87
F.103 ONT.ASSERT . 87
F.104 ONT.DESCRIBE . 88
F.105 ONT.GET . 88
F.106 ONT.GET-RESIDENT . 89
F.107 ONT.IMPORT . 89
F.108 ONT.INDIVIDUAL . 90
F.109 ONT.IS-INDIVIDUAL . 90
F.110 ONT.IS-OBJECT . 90
F.111 ONT.IS-TYPE . 91
F.112 ONT.RELATED-TO . 91
F.113 ONT.RELATION . 91
F.114 ONT.SET-DEFAULT . 92
F.115 ONT.TYPE . 92
F.116 ONTOLOGY . 93
F.117 PERFORMDESCRIPTOR . 93
F.118 PERFORMDESCRIPTOR.GET-STATUS . 93
F.119 PERFORMDESCRIPTOR.GET-STATUS-VALUE . 94
F.120 PERFORMDESCRIPTOR.GET-VALUE . 94
F.121 PERFORMDESCRIPTOR.OVERLAY . 94

July 21, 2014 Knowledge Science Group, University of Calgary 5 of 108

CASA USER MANUAL CONTENTS

F.122 PING . 95
F.123 POLICY . 95
F.124 PRIMITIVEONTOLOGY.INSTANCE-OF . 95
F.125 PRIMITIVEONTOLOGY.ISA . 96
F.126 PRIMITIVEONTOLOGY.ISA-ANCESTOR . 96
F.127 PRIMITIVEONTOLOGY.ISA-CHILD . 97
F.128 PRIMITIVEONTOLOGY.ISA-DESCENDANT . 97
F.129 PRIMITIVEONTOLOGY.ISA-PARENT . 97
F.130 PRIMITIVEONTOLOGY.ISEQUAL . 98
F.131 PRIMITIVEONTOLOGY.PROPER-INSTANCE-OF . 98
F.132 proper-instance-of . 98
F.133 QUERY-REF . 99
F.134 QUERYREF . 99
F.135 QUERYW . 99
F.136 REQUESTW . 99
F.137 SC.ADD . 99
F.138 SC.CANCEL . 100
F.139 SC.FULFIL . 100
F.140 SCDESCRIPTOR . 101
F.141 SCOM . 101
F.142 SCONV . 101
F.143 SEQ . 101
F.144 SERIALIZE . 101
F.145 SET-DEFAULT-ONTOLOGY . 102
F.146 SET-SYSTEM . 102
F.147 SHOULDDOEXECUTEREQUEST . 102
F.148 SLEEP-IGNORING-INTERRUPTS . 102
F.149 SOCIALCOMMITMENT . 103
F.150 SUBSCRIBE-CONVERSATION . 103
F.151 TOSTRING . 104
F.152 TRANSFORM-STRING . 104
F.153 TRANSFORMATION . 104
F.154 TRANSFORMATION.GET-FROM . 105
F.155 TRANSFORMATION.GET-TO . 105
F.156 UI.HISTORY . 105
F.157 UI.MONITOR . 106
F.158 URL.GET . 106
F.159 URLS.GET . 107
F.160 WITH-ONTOLOGY . 107

July 21, 2014 Knowledge Science Group, University of Calgary 6 of 108

CASA USER MANUAL 1. INTRODUCTION

1 Introduction

CASA (Collaborative Agent Systems Architecture) is a framework for writing collaborative agents. CASA aims
to support many different agent conversational paradigms, such as social commitment, BDI (Belief, Desire,
Intention) and ad hoc models, and to support various standards such as the FIPA standard. But CASA also
aims to avoid forcing the programmer to commit to any particular paradigm.

CASA is written in Java 6.0 and uses Armed Bear Common Lisp [Common-Lisp.net, 2011] for ontology,
conversation and policy declarations, as well as for scripting and run-time control. CASA programmers may
define agent behaviour in terms of either Java or Lisp code, and have that behaviour called upon by policies
defined in either Java or Lisp code.

CASA agents interpret what to do with incoming and outgoing messages
or other events in terms of policies, which call on either Java methods or
Lisp functions to execute defined behaviour. Policies may be either global or
embedded in conversations which define protocols for exchange of messages.
Conversations, in turn, may be nested, and can contain state information.
Policies typically identify events using identifiers in event descriptors which are usually interpreted flexibly using
CASA’s built-in hierarchical ontology (see §5).

When an agent isn’t interpreting events (such as messages), it is free to perform other tasks. For example,
an agent could monitor sensors, do computations, or perform a search while it has no events to interpret. As
another example, when a social commitment agent interprets messages, it doesn’t usually execute behaviour
directly, but instantiates social commitments; so when a social commitment agent isn’t interpreting events, it
attempts to discharge it’s social commitments by executing specific behaviours to eliminate them.

2 Basic agent structure

Figure 1 depicts the structure of a basic agent. An agent consists of two threads:

1. A thread whose primary function is to listen for messages on a port, to decode them into message objects
(see §7), to wrap the message in a message event object, and then to queue them as events to the agent’s
event queue.

2. A main agent thread that does the things one normally thinks of as an agent doing, including dequeuing
events (e.g. received message events) from the event queue, and processing them appropriately.

Agent classes are implemented in a layered fashion (see Figure 2) to allow users of the CASA framework
to inherit the appropriate capabilities. All agents run in a thread, so the fundamental (abstract) agent type,
AbstractProcess inherits from the java.lang package’s Thread class. TransientAgent is the most basic con-
crete class and adds knowledge about messages, ontologies, etc. The Agent class adds persistence capabilities.
The remainder of the classes in Figure 2 will be discussed in sections 3 and 14.

3 Basic types of agents

This section explains the different types of agents considered the basic agents. All of these are bundled with
CASA. Typically, you would subclass either Agent (if you want persistence) or TransientAgent.

July 21, 2014 Knowledge Science Group, University of Calgary 7 of 108

CASA USER MANUAL 3. BASIC TYPES OF AGENTS

Figure 1: An agent, consisting of two threads. Figure 2: The basic agent class structure.

3.1 AbstractProcess

AbstractProcess is actually not an agent at all, since it is not aware of the semantic aspects of agent behaviour.
but is a superclass to all CASA agents. It inherits directly from Thread, so code executing in the main agent
tread can always get a reference to the agent using (AbstractProcess) Thread.currentThread(), however the
method AbstractProcess.getAgent() is recommended, and will return the agent even if the code is executing
in a “subthread” of the main agent thread (but one should be cautious, as it may return null if the agent isn’t
accessable).

AbstractProcess’s basic responsibilities are:

• initializing the event queue, and the listener thread (see §??).

• running the eventLoopBody() method continually until signalled to exit.

• all communications functions through its sendMessage() method and related methods.

3.2 TransientAgent

The TransientAgent class inherits directly from AbstractProcess and is the most primitive form of agent.
It adds “semantics” to the base behaviour in interpreting events using policies and conversations. It is also
responsible for reading in ontology, initialization files (containing policies and conversation definitions), and
script files during agent initialization.

July 21, 2014 Knowledge Science Group, University of Calgary 8 of 108

CASA USER MANUAL 3. BASIC TYPES OF AGENTS

tb
Area (Computer)Area (Computer)

Local Area
Coordinator

(LAC)

Cooperation
Domain (CD)

Agent C

Agent BAgent A

Local Area
Coordinator

(LAC)

Other Agents

Other Cooperation
Domains

Cooperation
Domain

Observer Agent

Figure 3: CASA LACs, CDs, and ordinary Agents

3.3 Agent

The Agent class inherits director from TransientAgent and adds persistence services to the base behaviour.
Note that you must actually switch on the persistence for it to work. This can be done by setting the agent
initialization Lisp command key parameter :persistent T.

3.4 LAC

The LAC class inherits directly from TransientAgent. An area is defined nominally as a single computer (but
could be a cluster of several computers, or a partition on a single computer). There is exactly one local area
coordinator (LAC) per area, which is responsible for local coordination and tasks such as:

• registering agents as part of their start-up process

• resolving agent URLs on behalf of other agents (see Section ??)

• “waking up” a local agent on behalf of a remote agent.

All application agents reside in one or more areas.

3.5 CooperationDomain

As shown in Figure 3, Cooperation Domains (CDs) act as a central “hub” for multi-agent conversations. Par-
ticipants may send messages directly to the Cooperation Domain for point-to-point, multi-cast, type-cast, and
broadcast communication within the Cooperation Domain (a group of agents working together on some task).
Agents within a cooperation domain may also use the cooperation domain to store persistent data that will
permanently be associated with the conversation, giving the conversation a lifetime beyond the transient par-
ticipation of the agents. Cooperation Domains may also store transaction histories for future playback of the
chronological development of the conversation artifacts.

July 21, 2014 Knowledge Science Group, University of Calgary 9 of 108

CASA USER MANUAL 4. AGENT ACTIVITY

4 Agent activity

An agent has a lifetime, which of course, consists of a beginning, a middle, and an end. These are initialization,
the event loop, and exiting. When the agent first starts, it must initialize before it can start normal agent
activity (see §4.2). After it is initialized, the agent enters its event loop, where it processes events or processes
any commitments it may have, or just sleeps if it doesn’t have anything to do (see §4.3). When an agent is
somehow signalled to exit, it may need to take certain actions (such as informing other agents it is exiting, or
saving data), and then finish up processing the events in its event queue before actually exiting (see §4.4).

A typical agent will spend the vast majority of its lifetime in the middle, event loop stage, so the event loop
is the most important stage to concentrate on. As the name implies, this stage typically focuses on processing
events. But not all agents are purely server agents, so many kinds of specific agents will also spend much of
their time generating events for other agents, or fulfilling other kinds of commitments (such as those on behalf
of their users or owners). Even purely server agents may hold commitments to other agents if they do not,
or cannot, immediately fulfill requests. So we say that an agent spends its time doing two things: processing
events, and processing commitments. Events are explained in §4.1, but CASA is very flexible1 as to how an
agent may handle commitments so an explanation of commitments is deferred to §8.

A central assumption of CASA is that agents may choose to lay anywhere on a continuum between purely
reactive and purely contemplative. However, a purely contemplative agent that doesn’t react in some way to its
environment hardly meets our expectations of an agent at all, so it seems any agent has to react to environmental
events to some degree. In CASA, an event can be anything from the receiving, sending, or observation of a
message, to a change in physical sensors, to an internal software event such as timer event, to a specific task
deferred at an earlier time from an agent to itself to do in the future. See Figure ??.

4.1 Events and handling threads

Figure 4: The CASA event classes.

Events are relatively easy to create. For example,
to create a event that will send a message to an-
other agent every minute, one can make use of the
RecurringTimerEvent class:

new RecurringTimeEvent("keepTellingTime", this,

60000, 60000) {

@Override

public void fireEvent() {

super.fireEvent();

sendMessage(ML.INFORM,

"keepTellingTime",

url,

ML.CONTENT,

new Time(System.currentTimeMillis())

.toString());

}

}.start();

which will result in queueing an event (named
“keepTellingTime”) to this agent’s event queue in 60 seconds (to be repeated every 60 seconds) that will
sent an inform message to the agent at address url.

Since a CASA agent’s main thread is responsible for dequeueing events and processing commitments, it
cannot be stopped to wait for an event to happen, since the waited-for event won’t be dequeued (and therefore,

1CASA provides for a library of commitment-handling mechanisms

July 21, 2014 Knowledge Science Group, University of Calgary 10 of 108

CASA USER MANUAL 4. AGENT ACTIVITY

the event won’t “happen”). For example, if we are executing in the agent thread (such as processing an event),
and we need to get some information from another agent, we would synchronously send a message and wait for
a reply:

StatusObject<MLMessage> stat = sendRequestAndWait(msg, timeout);

which will send the request msg and wait timeout milliseconds for a response. However, if we do that in the
main agent thread, the tread will sleep, and it will never pick up the response message arriving2. So, to avoid
this issue we need to create a new thread in which to execute the sleeping code, which we can do conveniently
by calling the agent’s makeSubthread() method3:

makeSubthread(new Runnable() {

@Override

public void run() {

StatusObject<MLMessage> stat = sendRequestAndWait(msg, timeout);

if (stat!=null && stat.getStatusValue()==0) {

// process an successful reply

}

else {

// process a failed reply

}

}

}).start();

Now, this new, independent thread is free to sleep while waiting on the response from another agent. However,
if, for some reason, in processing these messages you need to execute some of the code in the agent’s main
thread, you need to create an evert and place it on the agent’s event queue. You can do this easily:

agent.defer(new Runnable() {

public void run() {

//code to run in the agent’s thread.

}

}

which will create an event and immediately queue it to the agent’s event queue.

If you need to run this code in the agent’s thread and return some result to the current thread, you’ll need to
specialize the Runnable class and carefully handle timing it out and waiting on the event without being fooled

2Actually, sendRequestAndWait() will detect the problem and throw an exception.
3The makeSubthread() method is preferable to simply creating a new Thread because it will do additional tasks such as making

the agent object easily accessible from the tread, and naming the thread regularly to simplify debugging.

July 21, 2014 Knowledge Science Group, University of Calgary 11 of 108

CASA USER MANUAL 4. AGENT ACTIVITY

by spurious interrupts that may occur during your thread’s sleep. All this is actually fairly easy to do:

private class MyRunnable implements Runnable {

public Status result = null;

public boolean completed = false;

public MyRunnable() {}

@Override

public void run() {

result = // some result to return

completed = true;

}};

MyRunnable runnable = new myRunnable();

defer(runnable);

long timeout = System.currentTimeMillis()+3000; // timeout is 3 seconds

while (System.currentTimeMillis()<timeout) {

try { // in this case we, want WANT the interrupt exception to occur, if it didn’t the event timed out.

sleep(timeout-System.currentTimeMillis());

} catch (InterruptedException e) { // other, spurious, exceptions may happen

if (runnable.completed)

break;

}

}

if (runnable.completed) {

Status stat = runnable.result; // succes !

}

else {

// timed out

}

This works efficiently because the defer() method automatically arranges to have an interrupt called on the
calling thread when the Runnable completes.

4.2 Agent initialization

There are 3 main phases to an agent’s creation and startup, all of which have initialization methods associated
with them that a programmer can override in agent subclasses to add specific behaviour for the new type of
agent. As depicted in Table 1, these three phases are:

Construction where initializeConstructor() is called from the agent’s constructor and executes in the
caller’s thread. This is where the base structure of the two-threaded agent is created. In general,
subclasses should not be dong much in this method other than perhaps initializing data structures.

Thread initialization where initializeThread() is called from the agent’s thread’s run() method and exe-
cutes in the agent’s independent main thread. This is where ontologies and policies are loaded from
*.ont.lisp and *.init.lisp files respectively. After thread initialization is complete, AbstractProcess.-

isInitialized() returns true. Subclasses may begin activity in an override of this method if they are
not dependent on the agent being registered, but deferral of activity to initializeAfterRegistration

(boolean) is recommended.

Agent registered where initializeAfterRegistration (boolean) is called after the agent has successfully
(the parameter is true) or unsuccessfully (the parameter is false) negotiated registration with the Local
Area Coordinator (LAC) (see Section 3.4). In either case, initializeAfterRegistration (boolean) is
called exactly once. At this point the agent is fully initialized and communicating with other agents. Any

July 21, 2014 Knowledge Science Group, University of Calgary 12 of 108

CASA USER MANUAL 4. AGENT ACTIVITY

Phase Init Method Tasks

construction initialize-
Constructor()

AbstractProcess: calls makeOptions() to initialize the options variable (allowing subclasses
to provide extended versions of the Options class
AbstractProcess: Initializes the agent’s URL, including correcting the port number if nec-
essary
AbstractProcess: starts up the agent listener (SocketServer)

thread
initialization

initializeThread() AbstractProcess: sets the trace file name (from the URL)
AbstractProcess: sets runtime options from the command line
(resetRuntimeOptionsFromCommandLine()
AbstractProcess: sets the security package if necessary (from
resetSecurtiyPackage(value of SECURITY command parameter))
TransientAgent : initializes policies and the commitment processor through
initializePolicies()

TransientAgent : reads in the ontologies from agentname.ont.lisp, classname.ont.lisp, or
superclassname.ont.lisp ... where these are searched according to §A (all these names are
fully qualified with delimiter “.”)
TransientAgent : executes the Lisp initialization files from most-general-superclass-
name.init.lisp, ... most-specific-superclass-name.init.lisp, agentname.init.lisp, where these
are searched according to §A (all these names are fully qualified with delimiter “.”)
TransientAgent : initialize proxy agents if specified by :PROXIES on the cmd line
TransientAgent : register this agent in the AgentLookUpTable

TransientAgent : initialize the Jade semantic extensions (belief base)
TransientAgent : sets up a default banner string to be used by UI interfaces (getBanner())
TransientAgent : send the request/registerAgent to the LAC if the specified LAC port >
0 (by the command line :LACPORT or the LACdefaultport preference (see §B, default
9000)) or otherwise call intiializeAfterRegistered(false)

agent
registered

initializeAfter-
Registration
(boolean
has registered)

TransientAgent : reset the banner with the after-registration data
TransientAgent : executes any Lisp script files from most-general-superclass-name.lisp, ...
most-specific-superclass-name.lisp, agentname.lisp, where these are searched according to
§A (all these names are fully qualified with delimiter “.”)
Agent : if :PERSISTENT is true (or omitted):
Agent : initialized the persistent file and load it, being careful to restore command line
options
Agent : read in the ∗ontology node from the file if persistentOntology is true
Agent : reset the port number in the properties
Agent : set the CreateDate attribute in the properties if this is its first creation

Table 1: Initialization phases, initialization methods, and their function.

agent script files (*.lisp) are called here. It is recommended that agents override this method to begin
their activity, however, be attentive to the boolean parameter, as it may be that case the agent actually
isn’t registered.

When overriding any of the initialization methods, care must be taken to call the super version of the method
in the overriding method, preferably at the beginning of the method body.

4.3 The event loop

Once the main agent thread (see Figure 1) is initialized (see Section 4.2), it has two tasks: processing events
from the event queue, and processing any internal commitments that might arise from processing the events4.

4or may have arisen from the some other task the specific agent type might undertake – CASA leaves this up to the specific
agent implementation

July 21, 2014 Knowledge Science Group, University of Calgary 13 of 108

CASA USER MANUAL 4. AGENT ACTIVITY

new Event event = eventQueue.getItem();

if (event == null) {

boolean didSomething = processCommitments();

if (!didSomething && eventQueue.isEmpty()) {

try {

synchronized (this) {

wait(exit?500:0);

}

}

catch (InterruptedException e) {}

}

}

else {

processEvent(event);

}

Figure 5: The body of the CASA event loop

So the agent behaviour is: If any work items are to be done (processing events and/or commitments), they are
all done in sequence (priority to events) as fast as possible. When everything is complete, the agent sleeps until
it is interrupted. The sleeping agent is typically interrupted by the listener thread (see Figure 1) queueing a
new event.5

Thus, once initialized, an agent loops throughout its lifetime in an event loop, the body of which is imple-
mented by the private final method AbstractProcess.messageBufferLoopBody(). As seen in Figure 5, the
body of the event loop checks to see if there is anything in the event queue, and process one of them if there
are any (processEvent()). If there is nothing in the event queue, the agent is given a chance to process
any active commitments (processCommitments()). If there is nothing to do, the thread sleeps until it is
interrupted (unless the agent is exiting, in which case it sleeps only 500ms at most).

Processing events

In AbstractProcess, every event taken from the event queue is processed by calling it’s private void

processEvent(Event) method. After some processing and checking, processEvent(Event) will normally
call its abstract handleEvent(Event) method. This method is overridden by TransientAgent to do the
actual semantic processing on the event. All this behavior is summarized in Table 2.

AbstractProcess’s processEvent (Event) method does the following:

1. if the event is not a EVENT MESSAGE RECEIVED or a EVENT MESSAGE OBSERVED then go on
to the last step.

2. If there is a security filter, processEvent() calls the security filter’s processEvent() method to decrypt
the message if necessary (see Section 14).

3. If the message is not actually addressed to the agent and the agent is not observing all messages the
method exits.

5Other events that may wake a sleeping agent are timer events, or some other thread specifically calling the agent thread’s
interrupt() method.

July 21, 2014 Knowledge Science Group, University of Calgary 14 of 108

CASA USER MANUAL 4. AGENT ACTIVITY

step class method

If this is an incoming message event, preprocess mes-
sage event by security decoding and notifying observers
of an EVENT MESSAGE RECEIVED; or by dropping
the event if the security declines, it isn’t for the agent,
or it’s a exit message. If the event hasn’t been dropped,
call handleEvent().

AbstractProcess private void processEv-
ent(Event event)

Collect all applicable policies from either conversations
or global policies; add in the always-apply policies; if
we found none, use the last-resort policies. If we have
policies, call the processPolicies(...) method, oth-
erwise call the event’s fireEvent() method.

TransientAgent protected Status han-
dleEvent (Event event)

Apply policies. If policies fail and this is a message
event, return a “not understood” message.

TransientAgent private void processPoli-
cies(...)

Table 2: Event processing

4. If the message is not authorized (see Section 14), the method prints a warning to the log file and exits.

5. If this is an exit message (see Section 4.4), the method exits.

6. Notifies all observers (see Section 12) by calling notifyObservers (ML. EVENT MESSAGE RECEIVED,

msg)

7. Calls the agent’s handleEvent(Event) method.

handleEvent(Event) is not implemented by AbstractProcess; subclasses should override this method
if they wish to handle incoming messages in their own way. However, TransientAgent6 provides a default
implementation:

1. If the event has an associated conversation ID (even some non-message events may have an associated
conversation ID), then find all current conversations labeled with this conversation ID that have applicable
policies. If more than one such conversation is found, log it as an error and choose the first one found.
We now have zero or one selected conversations, and zero or more applicable policies.

2. If we have not found any applicable policies, then search the agent-global policies7 for applicable policies.

3. If we have still not found any applicable policies, then search the last-resort policies8 for applicable policies.

4. Add in any applicable always-apply policies9 to the set of applicable policies.

6 TransientAgent.handEvent() should only be called in the agent’s main thread.
7Agent-global policies are policies that are only searched if there are no policies found in applicable conversations. For example,

these may be policies that create conversations, or policies to handle simple inform messages.
8Last-resort policies are that are only searched if no other policies apply. For example, “Send a not-understood message in reply

to a message where no applicable policy can be found.”
9Always-apply policies are policies that are always searched, no matter what. These are often basic social norms, for example,

“Always reply to a request.”

July 21, 2014 Knowledge Science Group, University of Calgary 15 of 108

CASA USER MANUAL 4. AGENT ACTIVITY

5. If the option threadedEvents is set true, then call processPolicies(...) in a newly-created thread;
otherwise simply call processPolicies(...) from this thread.

TransientAgent.processPolicies(...) does the following:

1. Calls the static method PolicyContainer.applyPolicies(...) (see Section 9.2) with the list of appli-
cable policies.

2. If the above application returns null or a Status with a value of 138 or it returns a StatusObject

containing a null object or a List object of size zero, then the application is deemed to have not handled
the event.

3. For non-executable events:

(a) If there were no applicable policies (except ghost policies10) then log it as a warning.

(b) Otherwise, if the event was unhandled by the applicable policies, then log it as a error or warning
(error if the event hand any observers, warning otherwise).

(c) If the event was unhandled (whether there were or weren’t any applicable policies) and it is a message
event, then call the unhandledMessage(MLMessage) method, which by default, will just log the
unhanded message as a warning.

4. Fire the event (call the event’s fireEvent() method).

5. Call the event’s delete() method. Note that the event may or may not actually delete itself – for
example, it may not delete itself if it is a repeating event that has not been cancelled.

6. Interrupt the agent’s thread if this method is not running in the agent’s thread.

PolicyContainer.applyPolicies() takes the list of applicable policies, filters them, and sorts them (see
Section 9.2) and then calls the apply() method of each of these policies. In the case of CASA’s Lisp-defined
policies (see Section 11), this involves executing the lisp code for consequent part of the policy.

Processing commitments

AbstractProcess does not define its method processCommitments(), and subclasses are free to over-
ride it. But TransientAgent provides a default: it calls its commitmentProcessor’s (and instance of
CommitmentProcessor) processCommitments() method. CommitmentProcessor is an abstract class, and
by default the concrete subclass casa.policies.sc2.ConcreteCommitmentProcessor is used. Subclassing
agents may replace the CommitmentProcess by using setCommitmentProcessor.

The default commitment processor (ConcreateCommitmentProcessor)’s processCommitments() method
will choose a single active commitment from its CommitmentStore and execute it. ProcessCommitments()

returns true if it processed a commitment (or attempted) and false otherwise to signal the event loop see §5)
that it can sleep without calling processCommitments() again immediately.

10Ghost policies are policies that we do not want to count as being applied. For example, the policy to fulfill a commitment to
send or receive a message by that message being sent or received.

July 21, 2014 Knowledge Science Group, University of Calgary 16 of 108

CASA USER MANUAL 5. ONTOLOGY

4.4 Exiting

An agent is signalled to exit by calling the AbstractProcess.exit() method. But the agent does not exit
immediately; it does the following first:

1. It sets the exit flag so that the event loop (Section 4.3) will terminate after all pending events are
cleared.

2. It calls its abstract pendingFinishRun() method. Subclasses should override pendingFinishRun() to
take appropriate actions before exiting.

3. It queues a dummy exit event to keep the event queue open for at least another 200ms.

Agent classes TransientAgent and Agent both override the pendingFinishRun() method to add their
own behaviors:

TransientAgent.pendingFinishRun() withdraws the agent from an CDs (see Section 3.5) it has joined
and unregisters the agent from the LAC (see Section 3.4). Both of these tasks are accomplished by carrying
out conversations with the relevant agents, and this is the need for the event queue to remain operational: the
event queue is used to process the messages in these conversations.

Agent.pendingFinishRun() writes out persistent data to the datafile allocated by the LAC upon regis-
tration.

5 Ontology

Since CASA deals with performatives and acts in messages as full types and not just as tokens, it must be
capable of supporting a type system. CASA supports two ontology systems, and may be extended to support
others. OWL2 is fairly “standard” with W3C and has several good tools supporting it. Therefore, OWL2 is
the recommended ontology system to use.

Both ontology systems support common Java and Lisp interfaces.
The Java interface is defined by casa.ontology.Ontology:

add(String)

addIndividual(String, String)

addIndividual(String, String...)

addType(String, String)

addType(String, String...)

declMaplet(String, String, String)

declRelation(String, String, Set<Property>, Constraint, Constraint, Object...)

describe(String)

describeIndividual(String)

describeRelation(String)

describeType(String)

extendWith(String)

getName()

instanceOf(String, String)

isa(String, String)

isCompatable(Ontology)

July 21, 2014 Knowledge Science Group, University of Calgary 17 of 108

CASA USER MANUAL 5. ONTOLOGY

isCompatableThrow(Ontology)

isIndividual(String)

isObject(String)

isRelation(String)

isType(String)

relatedTo(String, String)

relatedTo(String, String, String)

toString()

The Lisp interface is:

ONT.ASSERT,DECLMAPLET set a type-to-type relationship in the specified relation.

ONT.GET,GET-ONTOLOGY Retrieves ontology int either from the shared memory or from a file of

the same name ([name].

ONT.GET-RESIDENT,GET-RESIDENT-ONTOLOGIES Retrieves a list of the names of the ontologies

in shared memory.

ONT.INDIVIDUAL,DECLINDIVIDUAL Declare an individual in the A-box.

ONT.IS-INDIVIDUAL,DECLINDIVIDUAL Return true iff the parameter is an individual in the

ontology.

ONT.IS-OBJECT,DECLINDIVIDUAL Return true iff the parameter is a type or an individual in

the ontology.

ONT.IS-TYPE,DECLINDIVIDUAL Return true iff the parameter is a type (not an individual) in

the ontology.

ONT.RELATED-TO If RANGE is specified, return T iff the DOMAIN is related to the RANGE by the

specified RELATION, otherwise return the set of elements in range of DOMAIN by RELATION.

ONT.RELATION,DECLRELATION Define a relation in the agent’s casa ontology.

ONT.SET-DEFAULT,SET-DEFAULT-ONTOLOGY Sets the agent’s default ontology either from the

shared memory or from a file of the same name ([name].

ONT.TYPE,DECLTYPE Declare a type in the T-box.

ONTOLOGY,DECLONTOLOGY,WITH-ONTOLOGY Declare a new Ontology or extends an existing Ontology.

You can get more detailed information on the Lisp commands in CASA by using the Lisp command (describe

’<commandName>).

5.1 OWL2 Ontology

OWL2 [Motik et al., 2011] is a standard language that can be written in several different forms, and has several
tools for ontology editing and analysis. One of these tools is Protege [Stanford Center for Biomedical Informatics Research, 2013],
which offers ontology editing and and graphical analysis.

OWL2 is CASA’s default ontology. For documentation on OWL2, see Table 3.
For information on loading and using CASA ontologies, see §5.3.

5.2 CASA Native Ontology [Deprecated]

CASA maintains a lattice-based type system written in java, but which can be more conveniently accessed in
lisp (see §11). In CASA’s ontology, relations, types and individuals are defined. Relations are defined as either
primitive:

July 21, 2014 Knowledge Science Group, University of Calgary 18 of 108

CASA USER MANUAL 5. ONTOLOGY

Type Document

For Users Document Overview. A quick overview of the OWL 2 specification that includes a description of its relation-
ship to OWL 1. This it the starting point and primary reference point for OWL 2. http://www.w3.org/TR/

owl2-overview/#

Core Specifi-
cation

Structural Specification and Functional-Style Syntax defines the constructs of OWL 2 ontologies in terms of both
their structure and a functional-style syntax, and defines OWL 2 DL ontologies in terms of global restrictions
on OWL 2 ontologies. http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/

Core Specifi-
cation

Mapping to RDF Graphs defines a mapping of the OWL 2 constructs into RDF graphs, and thus defines
the primary means of exchanging OWL 2 ontologies in the Semantic Web. http://www.w3.org/TR/2012/

REC-owl2-mapping-to-rdf-20121211/

Core Specifi-
cation

Direct Semantics defines the meaning of OWL 2 ontologies in terms of a model-theoretic semantics. http:

//www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/

Core Specifi-
cation

RDF-Based Semantics defines the meaning of OWL 2 ontologies via an extension of the RDF Semantics.
http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/

Core Specifi-
cation

Conformance provides requirements for OWL 2 tools and a set of test cases to help determine conformance.
http://www.w3.org/TR/2012/REC-owl2-conformance-20121211/

Specification Profiles defines three sub-languages of OWL 2 that offer important advantages in particular applications sce-
narios. http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/

For Users OWL 2 Primer provides an approachable introduction to OWL 2, including orientation for those coming from
other disciplines. http://www.w3.org/TR/2012/REC-owl2-primer-20121211/

For Users OWL 2 New Features and Rationale provides an overview of the main new features of OWL 2 and motivates
their inclusion in the language. http://www.w3.org/TR/2012/REC-owl2-new-features-20121211/

For Users OWL 2 Quick Reference Guide provides a brief guide to the constructs of OWL 2, noting the changes from
OWL 1. http://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/

Specification XML Serialization defines an XML syntax for exchanging OWL 2 ontologies, suitable for use
with XML tools like schema-based editors and XQuery/XPath. http://www.w3.org/TR/2012/

REC-owl2-xml-serialization-20121211/

Specification Manchester Syntax (WG Note) defines an easy-to-read, but less formal, syntax for OWL 2 that is used
in some OWL 2 user interface tools and is also used in the Primer. http://www.w3.org/TR/2012/

NOTE-owl2-manchester-syntax-20121211/

Specification Data Range Extension: Linear Equations (WG Note) specifies an optional extension to OWL
2 which supports advanced constraints on the values of properties. http://www.w3.org/TR/2012/

NOTE-owl2-dr-linear-20121211/

Table 3: OWL2 Documentation Overview [Motik et al., 2012]

(ont.relation "isa-parent")

or in terms of another relation with further properties:

(ont.relation "isa" :base isa-parent :transitive :reflexive)

Here, the relation isa is defined in terms of the early-defined relation isa-parent, but it is further defined
as being both reflexive ((isa x x) is always true), and transitive ((isa a b)∧ (isa b c)→ (isa a c)). One can define
actual elements of a relation:

(ont.assert isa-parent "action" TOP)

(ont.assert isa-parent "performative" action)

meaning that action is a related to TOP and performative is a related to action in the isa-parent

relation. By the definition of isa above, the system infers (isa action action), (isa performative

performative) and (isa performative TOP).

July 21, 2014 Knowledge Science Group, University of Calgary 19 of 108

http://www.w3.org/TR/owl2-overview/#
http://www.w3.org/TR/owl2-overview/#
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/
http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/
http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
http://www.w3.org/TR/2012/REC-owl2-conformance-20121211/
http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2012/REC-owl2-new-features-20121211/
http://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/
http://www.w3.org/TR/2012/REC-owl2-xml-serialization-20121211/
http://www.w3.org/TR/2012/REC-owl2-xml-serialization-20121211/
http://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211/
http://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211/
http://www.w3.org/TR/2012/NOTE-owl2-dr-linear-20121211/
http://www.w3.org/TR/2012/NOTE-owl2-dr-linear-20121211/

CASA USER MANUAL 5. ONTOLOGY

CASA’s ontology system is implemented in Java, and has interfaces in both Java and Lisp. The ontology
system is hierarchical; that is, an ontology may extend a “parent” ontology (called the superontology). On-
tologies all have names, and public ontologies are all registered globally (per process) and accessible via the
Java CASAOntology.getOntology(String name) method (or the Lisp (get-ontology <name>) function).
An ontology contains up to three types of objects: types, individuals and relations. Types and individuals, of
course represent types and individuals respectively. Relations are somewhat more complex.

Types and Individuals

Types are symbols representing abstract types, whereas individuals are symbols representing concrete objects.
Types and individuals are declared in Lisp like this:

(ont.type "person")

(ont.individual "fred")

This only works, of course, within the context of a specific ontology, but one may specify the ontology in the
declaration like this:

(ont.type "person" :ontology <an-ontology-name>)

In Java, the same thing is accomplished like this:

CASAOntology myOntology = new CASAOntology("myOntology");

Type person = myOntology.declType("person");

Individual fred = myOntology.declIndividual("Fred");

When either types or individuals are declared, they are instantiated as symbols in the Lisp environment with
their value being the string equivalent. This means that although you must declare types and individuals in
Lisp with double quotes around them, once they are declared, you no longer need to use the double quotes.

Types are also implicitly declared when they are used in the domain position in a (ont.assert ...) Lisp
command or a Ontology.ont.assert(...) Java method (see §5.2).

Relations

Relations represent binary relations among types and individuals. A primitive relation is, conceptually, nothing
more than a set of ordered pairs of types or individuals. However, relations can have several properties such as
symmetry, reflexivity, and transitivity.

Relation properties

Properties are implemented as decorators (à la the decorator pattern [Gamma et al., 1994]) on top of a primitive
relation. Thus, we can define the relation isa-parent as a primitive relation, then further define isa-ancestor
as transitive decorator on top of isa-parent. Furthermore, we can define the relation isa as a reflexive decorator
on top of isa-ancestor. Thus, we have the isa relation defined as two decorators on top of a primitive relation:

→ isa: reflexive → isa-ancestor: transitive → isa-parent: primitive

isa may be defined in the Lisp in the following way:

July 21, 2014 Knowledge Science Group, University of Calgary 20 of 108

CASA USER MANUAL 5. ONTOLOGY

(ont.relation "isa-parent")

(ont.relation "isa-ancestor" :base isa-parent :transitive)

(ont.relation "isa" :base isa-ancestor :reflexive)

Or, in Java, using the declRelation(final String name, ConcreteRelation basedOn, Set<Relation.Property>

properties, Constraint domConstraint, Constraint ranConstraint, Object... otherParams) method:

ConcreteRelation isaParent, isaAncestor, isa;

isaParent = primitiveOntology.declRelation("isa-parent", null, null, null, null);

isaAncestor = primitiveOntology.declRelation("isa-ancestor", isaParent,

new Relation.Property[]{Relation.Property.TRANSITIVE}, null, null);

isa = primitiveOntology.declRelation("isa", isaAncestor,

new Relation.Property[]{Relation.Property.REFLEXIVE}, null, null);

As with types and individuals, relations are also instantiated in the Lisp environment when they are declared.
But relations are instantiated as functions. Relational functions take either one or two arguments. The one
argument version takes a domain object (type or individual) and returns a list of objects in the range for the
domain (if any). The two argument version takes a domain object and a range object and returns T if the
relation is satisfied for this pair, and NIL otherwise. For example, if we imagine the appropriate declarations:

(isa horse mammal) → T

(isa horse) → (mammal animal TOP)

While all three of the above relations are useful, sometimes the intermediate relations are not of interest.
For example, equal is reflexive, transitive, and symmetric, but we generally have not interest in the intermediate
relations. So, we can simply define our relation isequal in Lisp as:

(ont.relation "isequal" :symmetric :transitive :reflexive)

or, in Java:

ConcreteRelation isequal;

isequal = primitiveOntology.declRelation("isequal", null, new Relation.Property[]{

Relation.Property.TRANSITIVE,

Relation.Property.REFLEXIVE,

Relation.Property.SYMMETRIC}, null, null);

This forms the following decorator pattern:

→ isequal: reflexive → isequal: transitive → isequal: symmetric → isequal: primitive

In this case, all but the top decorator in the chain are hidden from normal use, so the fact that they all have
the same name, “isequal”, doesn’t matter much.

July 21, 2014 Knowledge Science Group, University of Calgary 21 of 108

CASA USER MANUAL 5. ONTOLOGY

TOP

animal

mammal

dog

retriever boxer

cat

lion siamese

Now that we have defined the isa relation we can define
a simple example ontology of mammals:

(ont.assert isa-parent "animal" TOP)

(ont.assert isa-parent "mammal" animal)

(ont.assert isa-parent "cat" mammal)

(ont.assert isa-parent "lion" cat)

(ont.assert isa-parent "siamese" cat)

(ont.assert isa-parent "dog" mammal)

(ont.assert isa-parent "retriever" dog)

(ont.assert isa-parent "chihauhau" dog)

Uses

TOP

animal

mammal

dog

retriever chihauhau

cat

lion siamese

k9

This is all good, but we note that there are synonyms
for some of the terms used in this ontology. For ex-
ample, we might want to also refer to “dog” as “k9”,
which we take to be the same thing. The ontology
allows for this by allowing one relation to use another
relation as an equality relation. This is implemented
as another decorator on a relation and it is specified
as a parameterized relation property. For example, we
may revise our previous definition of the isa-parent

relation to:

(ont.relation "isa-parent" :uses isequal)

and add the definition:

(ont.assert isequal "k9" dog)

The decorator pattern chain for the isa relation now looks like this:

isa: reflex-
ive

is-ancestor:
transitive

isa-parent:
uses

isequal:
reflexive

isequal:
transitive

isequal:
symmetric

isequal:
primitive

isa-parent:
primitive

The ontology system is not only capable of representing a type (isa) lattice with equality, but also arbitrary
relations as well. For example, we may wish to implement a relation bigger whose maplet’s domain elements
are “bigger” than the corresponding range elements. We would expect bigger to be transitive, and not reflexive
and not symmetric, and we want it the use the isa lattice:

(ont.relation "bigger" :transitive :uses isa)

July 21, 2014 Knowledge Science Group, University of Calgary 22 of 108

CASA USER MANUAL 5. ONTOLOGY
TOP

animal

mammal

dog

retriever chihuahua

cat

lion siamese

And we can say that dogs are bigger than cats:

(ont.assert bigger dog cat)

which gives the following results:

(bigger dog cat) → T

(bigger retriever cat) → T

(bigger retriever siamese) → T

(bigger retriever lion) → T

(bigger chihuahua cat) → T

which is what we expect, taking into account the isa type lattice. However, while the first 3 evaluations above
are “normal”, the last two aren’t really what we want: a lion is an exceptionally big cat, and is usually bigger
than a typical dog. And a chihuahua is an unusually small dog, and is really smaller than a cat. We can deal
with these anomalous situations using a form of asymmetry : where we force a relational query to accept only
one of multiple possible inferred conflicting maplets, disambiguating based on which is the most specific. To do
this, we give the bigger relation the asymmetric property and add the more detailed maplets:

(ont.relation "bigger" :transitive :uses isa :asymmetric)

(ont.assert bigger dog cat)

(ont.assert bigger lion dog)

(ont.assert bigger cat chihuahua)

TOP

animal

mammal

dog

retriever chihuahua

cat

lion siamese

which gives more realistic evaluations:

(bigger retriever lion) → NIL

(bigger lion retriever) → T

(bigger chihuahua cat) → NIL

(bigger cat chihuahua) → T

But also the following evaluation holds

(bigger dog chihuahua) → T

which seems wrong because a chihuahua is a dog. It turns out the system infers this truth because (bigger

dog cat) and (bigger cat chihuahua) and bigger is transitive. This makes sense intuitively too, since a
chihuahua is smaller than a typical dog.

Constraints

In addition, modelling often requires restricting the domain and range of relations in several ways. To ac-
commodate this, there are two additional key parameters that ont.relation takes: :domain-constraint and
:range-constraint. Both of these take a Constraint object as a parameter. In Lisp, you can easily construct
a constraint for almost any situation using the constraint function:

type (optional) Constraints the parameter (domain/range) to this type as the most general type.

:individual-only Constrains the parameter to be an Individual.

July 21, 2014 Knowledge Science Group, University of Calgary 23 of 108

CASA USER MANUAL 5. ONTOLOGY

:type-only Constrains the parameter to be a Type.

:exp Constrains the parameter to conform to this Lisp expression. The expression must return a boolean
result. The expression will be executed in the context of the following environment variables: $type is
the type-name under validation; $0 is the domain type in the relation; $1 is the range type in the relation.

:ontology Sets the ontology in which this constraint exists. If you omit this key, the ontology will be dynami-
cally chosen at run time.

:agent Sets the agent that “owns” this constraint. If you omit this key, the agent will be dynamically chosen
at run time.

For example, one may define the relation smaller-dog, which is restricted to a domain and range of individual
dogs, and is also restricted to being consistent with the relation bigger:

(ont.relation smaller-dog :asymmetric T

:domain-constraint (constraint dog :individual-only T :exp ’(bigger ?1 ?0))

:range-constraint (constraint dog :individual-only T))

Summary

To summarize, relations are built on top of primitive relations using the decorator pattern [Gamma et al., 1994]
(a chain of decorators, where each decorator represents a property of the relation). The decorators currently
available are:

reflexive ∀x • (rel x x).
Any element is always related to itself. For example, the equal relation.

symmetric ∀x, y • (rel x y)→ (rel y x).
If x is related to y, then y must be related to x. For example, the sibling relation.

transitive ∀x, y, z • (rel x y) ∧ (rel y z)→ (rel x z).
If x is related to y, and y is related to z, then x must be related to z. For example, the bigger relation.

asymmetric ∀x, y • (rel x y) ∧ (rel y x)→ (mostSpecific (rel x y) (rel y x))
where

(mostSpecific (rel x1 y1) (rel x2 y2)) =

((x1 < x2 ∧ y1 <= y2) ∨ (x1 <= x2 ∧ y1 < y2))→ (rel x1 y1) ∧
((x2 < x1 ∧ y2 <= y1) ∨ (x2 <= x1 ∧ y2 < y1))→ (rel x2 y2), otherwise it is an error.

where < and <= are the uses relation and the reflexive uses relation respectively.
If the relation is found to run in both directions, then take the direction of the most specific relational
pair as being true and the other direction as being false. Use the uses relation to evaluate specificity.
If we cannot distinguish one relational pair11 as being more specific than the others, then it is an error:
something was probably misspecified in the assertions.

11Either because there is no uses relation, or the uses relation does not distinguish.

July 21, 2014 Knowledge Science Group, University of Calgary 24 of 108

CASA USER MANUAL 6. KNOWLEDGE BASE

(declOntology "actions" ;

’() ; super ontologies

’(

; ACTIONS

(ont.assert isa-parent "action" TOP)

(ont.assert isa-parent "LAC_closing" action)

(ont.assert isa-parent "act" action)

(ont.assert isa-parent "chat_message" action)

...

)

)

Figure 6: CASA type definitions (excerpt).

uses=usesRel ∀x, y • ∃x′, y′ | ((usesRel x x′) ∨ x = x′) ∧ ((usesRel y y′) ∨ y = y′) • (rel x′ y′)→ (rel x y).
This relation will use usesRel as its equality relation. That is, if x is there is related to x′ and y is there
is related to y′ and x′ is related to y′ by the uses relation, then we shall take x and y to be related by
the relation. For example, the isa relation uses the is equal relation.

In addition, the following constraints may be applied:

domain-constraint=constraint The constraint on the domain.

range-constraint=constraint The constraint on the range.

5.3 CASA Ontologies

CASA agents implicitly load a specific ontology when they are activated. Specifically, the ontology they search
for is named by the same name as the agent’s name, the same name as the agent’s most specific class, and
the name for that class’s superclass, etc. These ontologies are first checked to see if they are already loaded,
and then an attempt is made to load them from a file named “name.ont.lisp” or “name.owl” depending on if
the current ontology engine is CASA’s native engine or the OWL2 engine. For an explanation of where CASA
searches for these filenames, see §A. In the case of the OWL2 ontology, if no named ontology is found on the
local machine, a final check is made for a web version at http://casa.cpsc.ucalgary.ca/ontologies/.

Because all agents must communicate and these communications demand a shared understanding of message
types (performatives, acts, etc.) all CASA agent ontologies should have the ontology casa as a superontology,
which can be loaded from the file casa.ont.lisp12 or casa.owl13. The casa ontology does little more than
inherit from the actions and the events ontologies (also included in the distribution as actions.ont.lisp

and events.ont.lisp respectively). Figure 6 shows an example excerpt from the actions ontology.

6 Knowledge Base

The default agent knowledge base is an implementation of the Jade’s [Bellifemine et al., 2007, Telecom Italia Lab, 2008,
Bellifemine et al., 2003] Semantic Extension [Pautret, 2006] belief base.

12The casa.ont.lisp file is in the CASA distribution in the /datafiles directory
13The casa.owl file is in the CASA distribution in the /datafiles directory, but may also be found at http://casa.cpsc.

ucalgary.ca/ontologies/casa.owl.

July 21, 2014 Knowledge Science Group, University of Calgary 25 of 108

http://casa.cpsc.ucalgary.ca/ontologies/
http://casa.cpsc.ucalgary.ca/ontologies/casa.owl
http://casa.cpsc.ucalgary.ca/ontologies/casa.owl

CASA USER MANUAL 7. MESSAGES

(request

:act register_instance

:sender Alice

:receiver LAC

:reply-by "2008.09.30 15:54:34.004 MDT"

:reply-with /casa/ChatAgent/Alice--0

:conversation-id /casa/ChatAgent/Alice--0

:language casa.*

:content "[\"(casa.URLDescriptor\\)\\\"Alice\\\"\",

\"(java.lang.Boolean\\)\\\"true\\\"\"]"

:priority 10)

Figure 7: A typical request message using KQML
markup. URLs have been simplified to save space.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE CASAmessage SYSTEM "CASAMessage.dtd">

<CASAmessage version="1.0">

<performative>agree</performative>

<act>request|register_instance</act>

<sender>LAC</sender>

<receiver>Alice</receiver>

<reply-by>Mon Jun 18 12:14:25 MDT 2012</reply-by>

<reply-with>LAC--3</reply-with>

<in-reply-to>Alice--2</in-reply-to>

<conversation-id>Alice-2</conversation-id>

<language>casa.*</language>

<content>["(casa.URLDescriptor)\"Alice\"",

"(java.lang.Boolean)\"true\""]</content>

<timeout>Wed Dec 31 17:00:10 MST 1969</timeout>

</CASAmessage>

Figure 8: A typical request message using XML markup.
URLs have been simplified to save space.

7 Messages

CASA deals with messages as the abstract class MLMessage, which is little more than a dictionary from keys
(String) to values (also String). CASA provides two concrete subclasses, KQMLMessage and XMLMessage

that provide streaming services for KQML-messages and XML-messages respectively. Programmers are free
to add addition message markup languages by subclassing MLMessage similarly. If the subclass is named
“<identifier>Message” and is loaded early after startup, CASA will automatically use the new message format
if it’s referenced. However, programmers can also manually register it using environment variables, or user or
system preferences with the identifier casa.MLMessage-subclasses (see §B).

Figure 7 shows a typical KQML message, and Figure 8 shows a typical XML message. By default, CASA
uses the KQML message format for outgoing messages, but this default can be changed using the preference
defaultMarkupLanguage (see §B), or at runtime by calling MLMessage.setMarkupLanguage(). Incoming mes-
sages are parsed using any of the registered markup languages by attempting them all, starting with the default.

Programmers may easily create a message of the default type by calling MLMessage.getNewMLMessage() or
MLMessage.getNewMLMessage(String... keyValuePairs). To specify the markup type, use MLMessage.get-
NewMLMessageType(String markupIdentifier) or getNewMLMessageType(String markupIdentifier, String...

keyValuePairs). In Lisp, use the function (agent.message performative act receiver ...any key is allowed).

Messages, whether incoming, outgoing or just observed14, are treated just as any event, and are queued on
the event queue as MessageEvents (a subclass or Event). For details of event handling see §4.1.

14an observed event differs from an incoming event in that the observed event is not addressed to the agent, but still arrived on
the event queue for any number of reasons.

July 21, 2014 Knowledge Science Group, University of Calgary 26 of 108

CASA USER MANUAL 8. COMMITMENTS

8 Commitments

Figure 9: Social Commitment states

Social commitments may be thought of as obligations
an agent has to other agents, where the agent is ob-
ligated to perform some action in the future. A so-
cial commitment is a much more complex object than
than an event, and social commitments are imple-
mented in CASA using several different events.

The SocialCommitment class is used to track a
social commitment. Figure 9 shows a social commit-
ment’s possible states and transitions. Social-

Commitments are also EventObservers, and can
therefore react to CASA events as described in §4.1.
SocialCommitments are created in association with
a set of Event objects, which implicitly include pre-
fired start events and perform action events if they are
not originally included in the event set. A Social-

Commitment starts out life as created but inactive. It
becomes active when a start event moves it into the
started state. The commitment cannot be executed
until it moves into the perform-action state. At any
time, a commitment may be designated fulfilled, or
cancelled, or one of its violation events may occur,
which places it in one of its terminal states. Persis-
tent commitments may be executed repeatedly. These
may be designated started from the ready-fulfilled
state.

One may wonder why a SocialCommitment does
not move into a terminal state after it is executed. The
reason for this is that, although an agent may execute a commitment, the intended outcome of the commitment
still needs to be verified (for example, by the approval of another agent) before it can be designated fulfilled.

The state machine follows the following rules:

• The state machine starts in the created state.

• The state machine ends in one of the fulfilled, canceled, or violated states.

• If the start event occurs and the current state is created, then the current state is set to started.

• If the perform action event occurs and the current state is started, then the current state is set to perform-
action.

• If the state becomes started and the perform action event has previously occurred, then the current state
is set to perform-action.

• If the stop event occurs and the current state is started or perform-action, then the current state is set to
fulfilled.

July 21, 2014 Knowledge Science Group, University of Calgary 27 of 108

CASA USER MANUAL 8. COMMITMENTS

• If the state becomes started and the stop event has previously occurred, then the current state is set to
fulfilled.

• If execute(PolicyAgentInterface) is called and the current state is perform-action, then the current
state is set to ready-fulfilled.

• If designateFulfilled() is called and the current state is not an end state, then the current state is
set to fulfilled.

• If designateCanceled() is called and the current state is not an end state, then the current state is set
to canceled.

• If designateStarted() is called and the current state is not an end state, then the current state is set
to started.

• If the violation event occurs and the current state is not an end state, then the current state is set to
violated.

• If the social commitment does not have a start event or perform action event, then those events are
considered to have occurred.

• If the start event or the perform action event occur before they have an effect, then the fact that they
have occurred is recorded.

• If the social commitment does not have a stop event or a violation event, then those event never occur.

8.1 Social commitment operators

Although CASA does not necessarily required the use of commitments, commitments are typically created in
policies (§9), especially policies following the Social Commitment paradigm. Policies are typically written in
Lisp (§11), so social commitments have a Lisp interface. However, commitments in policies are all executed in
“parallel”, so they are never executed directly, but rather, policies create social commitment operators when
they fire, and the operators are all executed when the policies have all finished firing. The execution of the
operators is what actually instantiates, cancels, or fulfills social commitments. The Lisp commitment operators
are sc.add, sc.fulfil, and sc.cancel which instantiate and remove social commitments to/from an agent’s
commitment store.

The key arguments for sc.add are:

:DEBTOR (casa.URLDescriptor) The debtor.

:CREDITOR (casa.URLDescriptor) The creditor.

:PERFORMATIVE The performative as defined in the agent’s ontology.

:ACT (casa.Act) The act.

:ACTION-CLASS (java.lang.String) A string representing the fully-qualified class name of the java Action

class (only one of :action and :action-class is allowed).

:ACTION (org.armedbear.lisp.Cons) An expression cons-list of repenting the action to be performed (only
one of :action and :action-class is allowed).

July 21, 2014 Knowledge Science Group, University of Calgary 28 of 108

CASA USER MANUAL 9. POLICIES

:DEPENDS-ON (casa.socialcommitments.SocialCommitmentDescriptor) The social commitment that this
one depends on and must be executed before this one can be executed.

:SHARED The commitment is a shared commitment.

:PERSISTENT The commitment is persistent and can only be removed with a CANCEL.

:GETEVENTS We should retrieve the events from the agent.

For example, to add a social commitment for Alice to send a message to Bob to Alice’s message store:

(sc.add :debtor Alice :creditor Bob :action ’(agent.send

(agent.message inform nil Bob :content "Hi Bob!")))

The key arguments for sc.cancel and sc.fulfil are:

:DEBTOR (casa.URLDescriptor) The debtor.

:CREDITOR (casa.URLDescriptor) The creditor.

:PERFORMATIVE The performative.

:ACT (casa.Act) The act.

Superficially, cancel and fulfil have the same impact on the system: they remove a social commitment.
Of course, a fulfil is only appropriate when the desired actions have been successfully executed by all the
agents involved. A cancel is appropriate when the action is no longer desired or cannot be executed.

9 Policies

Policies are rules that fire whenever they match the occurrence of an event. Policies dictate what an agent
should do whenever an event is processed from its event queue (see Section 4.3). As rules, policies have an
antecedent and a consequent. In a normal rule the antecedent us evaluated for a truth value, and if true, is
—emphfired (the consequent is executed), otherwise nothing happens. In CASA is the situation is slightly
different: there are two parts to the antecedent. One part, called the antecedent, is a object called an event
descriptor, which is matched against the event. If the event descriptor and the event match the rule is eligible
to be fired. The second part, called the precondition is evaluated for a truth value and both the precondition is
true and the antecedent matches, the policy is fired.

When a CASA policy fires, the Lisp expressions in the consequent are executed in order. Unless a consequent
expressions evaluates to a social comment operator (see §8.1), the results are ignored. However, all of the results
of consequent expressions that return a social comment operator are collected (for all the the policies that are
executed for the event) and these are all executed only after all the policies have fired for the event. This
has the effect of the policies operating and firing in parallel (in the same environment with respect to social
commitments).

An agent contains several categories of policies that may or may not be searched depending on the circum-
stances. They are searched in this order:

1. Conversation policies Conversations (see §10) contain policies, and an agent may have zero or more active
conversations. Any event that matches one or more active conversations (usually by a conversation-id
match) will trigger a search for matching policies in those conversations.

July 21, 2014 Knowledge Science Group, University of Calgary 29 of 108

CASA USER MANUAL 9. POLICIES

2. Normal policies If no active conversation has matching policies, then normal policies are searched for
matches.

3. Always-apply policies These policies are search for matching policies regardless of whether or not there
are already matched policies.

4. Last-resort policies These policies are search only if no other matching policies are found (with the ex-
ception of ghost policies (see §9.1. These would typically be used to respond with a “not understood” to
a message event, or to log an error or warning in response to some other event.

For each event, the agent searches the policy categories as explained above, but it does not fire the policies
until after the search is completed. Then the policies are filtered based on their event descriptors: one policy
overrides another if they both have identical performatives and its act is more specialized than the other. The
overridden policy is ignored. Only then are the policies actually fired. In this way, all policies are evaluated in
the same environment, independent of effects of other policies firing. It is possible to change the environment by
placing environment-changing code within the :precondition expression, but this is to be considered side-effect,
and is to be discouraged.

To actually register a policy with an agent, the Lisp operator is agent.put-policy which registers the ar-
gument policy as a normal policy by default, but ask takes the optional boolean key parameters :always-apply
and :last-resort to register the policy as an always-apply or last-resort policy respectively.

9.1 Policy Specification

A policy is a Lisp function (see the example in Figure 10), which may take the following parameters:

event-discriptor - An event descriptor

actions - A quoted list of social commitment operators appropriate to the event (i.e. add, fulfil, cancel,
and addif)

doc - A Documentation String (optional)

:precondition - A single-quoted list function which must evaluate to true for the policy to be selected (optional)

:postcondition - A single-quoted list function which tests whether the policy succeeded (optional) (currently
not used)

:name - A name to be applied to the policy. The default is the type of the event descriptor or “LispExpression”
if there is no event descriptor.

:ghost - Marks the policy as not-to-be counted when we count applicable policies. This is meant to model
low-level social norms or physical-world assumptions. (optional)

A policy function’s first parameter, the Event Descriptor, is typically filled by a event-descriptor for a
msgEvent-descriptor function call, both of which take one required parameter and a set of key parameters:

event-type The type of the event, which is expected to be an ontology entry.

other keyed parameters These keys may have any name and any value and they are used to match against
the key/value pairs in the target event.

July 21, 2014 Knowledge Science Group, University of Calgary 30 of 108

CASA USER MANUAL 9. POLICIES

(policy

‘(msgevent-descriptor event_messageReceived

:performative request

:act (act ,the-act)

:sender client

:receiver server

)

‘(

(sc.add

:Debtor server

:Creditor client

:Performative reply

:Act (act (event.get-msg ’performative)

(event.get-msg ’act))

:Action ‘(agent.reply (event.get-msg)

,’,request-decision)

:Shared

)

(conversation.set-state "waiting-request")

)

"For a request, instantiate a commitment to reply

for the receiver."

:precondition

’(equal (conversation.get-state) "init")

:postcondition

’(equal (conversation.get-state) "waiting-request")

:name "ask-server-000"

) ; end policy

Figure 10: A request policy from the server’s point of view. It reacts to an incoming request message by instantiating
a social commitment for the receiver to reply to the sender.

The policy function’s second parameter is made up of a quoted list consisting of any number of Lisp
functions. Should this policy’s event take place, these functions are executed. Of special significance are
functions that return social commitment operators, such as sc.add, sc.fulfil, or sc.cancel as described
in §8.1. See the middle of Figure 10 for an example sc.add clause.

9.2 Policy Execution

Policies are read in at agent initialization (see Section 4.2), but they are not executed then. They are stored in one
of a number of PolicyContainers and selectively applied whenever an event occurs. The PolicyContainers
are conversation policies, agent-global policies, always-apply policies, and last-resort policies. In addition,
policies may also be tagged as ghost policies, which means they don’t count as applicable policies, event when
they are applied.

Within a specific context (according to the process defined in Section 4.3), all policies that match an event
and who’s precondition succeeds are selected, filtered, and ordered.

selection: A policy is selected if the event descriptor in the policy matches. This match is firstly a
match if both the event’s type is a subtype of the policy’s event descriptor type and, if there is a
:precondition clause, the precondition doesn’t return false (Nil). A match may be further constrained
by the key/value pairs in the policy’s event descriptor; for example, a MsgEvent-descriptor also

July 21, 2014 Knowledge Science Group, University of Calgary 31 of 108

CASA USER MANUAL 10. CONVERSATIONS

checks that the performative of the message is subtype of the performative in the MsgEvent-descriptor

and the act of the message is a subtype of the act in the MsgEvent-descriptor.

filtering: Any policy in the set is eliminated if it is overridden another policy: One policy overrides another
If they both have identical performatives and its act is more specialized than the other. The overridden
policy (“super policy”) is ignored.

ordering: Policies have no real intrinsic order, but they are fired in order of their ID numbers.

The consequents of the each of these policies is then executed.
Social commitments (see §8) are handled specially: if a policy consequent generates a SocialCommitment-

Operator it is saved in a list of SocialCommitmentOperators, and this list is executed only after all the
policies have been been fired (executed). In this way, policies are guaranteed to be executed in the context of
the social commitments that existed before the policies where applied: They appear to operate in parallel with
respect to the current social commitments.

10 Conversations

While policies capture an agent’s reaction to a particular event, agents more typically need a lot more context
to make a decision about their behaviour in light of the current event. Especially for message exchanges with
other agents, this context is captured by the concept of a conversation. We have both conversation templates
that specify a the overall pattern and restrictions on a type of conversation; and conversation instances that
follow a template, have state, and capture a particular conversation. Conversation templates and instances
are analogous to classes and objects in object-oriented programming. In general, two-party conversations have
distinct behaviour or each side, which we typically label server part and client part. See the example in Figure
?? for the server side of a request conversation15

Figure ?? shows the inner structure of a conversation in the context of an agent and it’s own policies and
social commitments. When an event is processed, conversation policies are searched first for all applicable con-
versations, then the outer agent policies are searched, as described in §9. But the situation is actually a bit more
complex than that. Conversations have variables (including a state variable) which can figure in the selection
of applicable policies in the search. In addition, conversations can have any number of sub-conversations, which
may have their variables bound to the outer conversation’s variables. Furthermore, conversations automatically
keep track of commitments they had instantiated in the agent’s commitment store.

<agent>.init.lisp
file

conversation
template

conversation
instaniating

policy

conversation
instance

Conversation templates are usually created
at agent initialization in the <agent>.init-

.lisp file16 using the conversation lisp op-
erator. Conversation instances, on the other
hand, are usually created by the firing of a pol-
icy to create the conversation instance using
the agent.instantiate-conversation lisp op-
erator in it’s antecedent. These conversation-
instantiating policies are using created along
side the corresponding conversation template in the <agent>.init.lisp file.

15In fact, the example in Figure ?? is a Lisp function definition, (defun ...), with default arguments that simplify the creation
of a specific type of request server. For example, we might instantiate a conversation template to “request to register an agent”.

16Where <agent> stands for the fully-qualified agent class name, for example, casa.TransientAgent.

July 21, 2014 Knowledge Science Group, University of Calgary 32 of 108

CASA USER MANUAL 10. CONVERSATIONS

(defun request-server

(;will be named: the-act+"-request-server"

the-act

result-action

&key

;the actual request-like performative

(request-performative request)

;called for the error actions

(exception-handler ‘(agent.println ...))

;setting this gives a chance to AGREE or REFUSE

(request-decision ‘(performdescriptor 0 :performative agree))

;when we receive a AGREE reply to our PROPOSE

agree-action

;when we receive a REFUSE reply to our PROPOSE

(refuse-action exception-handler)

;when we receive a NOT_UNDERSTOOD reply to our PROPOSE

(not-understood-action exception-handler)

(timeout-action exception-handler)

agree-discharge-action

(refuse-discharge-action exception-handler)

(not-understood-discharge-action exception-handler)

(timeout-discharge-action exception-handler)

(base-name "request-server")

nopropose

transformation

optional-negotiation

&aux

(name (concatenate ’string the-act "-" base-name))

(ask-name (concatenate ’string name "-ask"))

(offer-name (concatenate ’string name "-offer"))

(approver-name (concatenate ’string name "-approver"))

)

"A Request server-side conversation" ; doc

; incoming request (agent-global policy): create this kind of conversation

(agent.put-policy

(policy

‘(msgevent-descriptor event_messageReceived :=performative ,request-performative :act (act ,the-act))

‘(

(agent.instantiate-conversation ,name (event.get))

;Do we really want this? Conversation instantiation sets the state

;(conversation.set-state "init") ; this should probably be the default

)

(concatenate ’string "Conversation2 global policy: For an incoming request/" the-act

", instantiate a server conversation. request-server-000")

;:precondition ’(equal (get-conversation-state) "not started")

;:postcondition ’(equal (conversation-state) "started")

:name (concatenate ’string "request-server-000(" base-name ")." the-act)

) ; end policy

)

Figure 11: An example CASA conversation (excerpt).

July 21, 2014 Knowledge Science Group, University of Calgary 33 of 108

CASA USER MANUAL 10. CONVERSATIONS

; outgoing propose (agent-global policy): create this kind of conversation

(if nopropose

()

(agent.put-policy ...

)

)

(conversation name

(list

(ask-server ask-name the-act result-action

:request-performative request-performative

:request-decision request-decision

:optional-negotiation optional-negotiation

)

(if nopropose

()

(offer-server offer-name the-act result-action

:refuse-action refuse-action

:not-understood-action not-understood-action

:timeout-action timeout-action

)

)

(discharge-server approver-name the-act ;(act2string (act discharge perform the-act))

:request-performative request-performative

:agree-action agree-discharge-action

:refuse-action refuse-discharge-action

:not-understood-action not-understood-discharge-action

:optional-negotiation optional-negotiation

)

)

:bind-state (append ‘(

("init" ,ask-name "init")

("waiting-request" ,ask-name "waiting-request")

("terminated" ,ask-name "terminated")

("waiting-discharge" ,ask-name "terminated-pending")

)

(if nopropose

()

‘(

("init" ,offer-name "init")

("waiting-propose" ,offer-name "waiting-propose")

("terminated" ,offer-name "terminated")

("waiting-discharge" ,offer-name "terminated-pending")

)

)

‘(

("init" ,approver-name "blocked-init")

("waiting-request" ,approver-name "blocked-request")

("waiting-propose" ,approver-name "blocked-propopose")

("waiting-discharge" ,approver-name "init")

("waiting-propose-discharge-reply" ,approver-name "waiting-propose")

("terminated" ,approver-name "terminated")

)

)

Figure 11: An example CASA conversation (excerpt). (continued)

July 21, 2014 Knowledge Science Group, University of Calgary 34 of 108

CASA USER MANUAL 10. CONVERSATIONS

:bind-var ’(("server"

(if (agent.isa (event.get-msg ’performative) request)

(new-url (event.get-msg ’receiver))

(new-url (event.get-msg ’sender))

)

)

("client"

(if (agent.isa (event.get-msg ’performative) request)

(new-url (event.get-msg ’sender))

(new-url (event.get-msg ’receiver))

)

)

)

:bind-var-to (append ‘(

("client" ,ask-name "client")

("server" ,ask-name "server")

)

(if nopropose

()

‘(

("client" ,offer-name "client")

("server" ,offer-name "server")

)

)

‘(

("client" ,approver-name "client")

("server" ,approver-name "server")

)

)

) ;conversation name

) ;defun request-server

Figure 11: An example CASA conversation (excerpt). (continued)

10.1 Conversation specification

The list operator conversation creates a conversation template, and registers it to the agent in context. The
conversation operator has the following definition:

The function’s lambda list is:

(NAME BINDINGS &KEY BIND-VAR BIND-VAR-TO BIND-STATE CLASS)

Declares a conversation.

NAME (java.lang.String) The name of the conversation.

BINDINGS (org.armedbear.lisp.Cons) A Cons list of Lisp functions describing sub-conversations or policies.

:BIND-VAR (org.armedbear.lisp.Cons) A Cons list of pairs of symbol/values pairs (themselves Cons lists) that will

be bound in the context of the conversation. The expressions are evaluated at the time the conversation is

created.

:BIND-VAR-TO (org.armedbear.lisp.Cons) A Cons list of triples of symbol/childConversation/childSymbol (themselves

Cons lists) that will be bound in the context of the conversation.

:BIND-STATE (org.armedbear.lisp.Cons) A Cons list of triples of state/childConversation/childState (themselves

Cons lists) that will be bound in the context of the conversation.

:CLASS (java.lang.String) The specific subclass of a Conversation.

The NAME required parameter is the name of the conversation, which will be used to refer to the conversation
template when, for example, we wish to instantiate an instance of a conversation from the template. The

July 21, 2014 Knowledge Science Group, University of Calgary 35 of 108

CASA USER MANUAL 10. CONVERSATIONS

BINDINGS required parameter is a list of Lisp expressions. Those expressions returning a policy will have that
policy incorporated in the conversation; those expression returning a conversation will have that conversation
incorporated as a subconversation in the conversation; those expressions returning other values will be ignored.
The following subsections explain the keyed parameters in detail.

Variables

Variables are declared by listing symbol/value pairs in the :BIND-VAR key parameter. The symbols will be
available (for read/write) as regular Lisp symbols to the policies and inner Lisp code during the course of the
conversation. The initial value of the symbol in the value from the symbol/value pairs. The symbol/value pair
state/init is automatically initialized.

Bindings

Variables in a subconversation may have their values bound to the values of variables (not necessarily with the
same name) in the containing conversation by listing the mapping :BIND-VAR-TO parameter. It is as if the
variable in the sub conversation were a pointer to the containing conversation’s variable. A change in the sub
conversation’s variable value is instantly reflected in the corresponding change to the containing conversations’
variable value, and vice-versa.

The state variable is a special case in which the values if the state valuable in the subconverstion are

Figure 12: CASA conversations, policies, and social commitments

July 21, 2014 Knowledge Science Group, University of Calgary 36 of 108

CASA USER MANUAL 11. SCRIPTING LANGUAGE: LISP

mapped to values of the state variable in the containing conversation. This is done with the :BIND-STATE key
parameter. This is primarily used to like the states between the containing conversation and all subcenversations.
For example, a conversation might contain two sub conversations, which should both be initially disabled. One
way to do this to set :BIND-STATE to :BIND-STATE ’((init subc1 disabled) (init subc2 disabled)).
If later, when the state of the containing conversation becomes, say, “waiting” we want to activate the first
subconversation, we could use the following setting:

:BIND-STATE ’((init subc1 disabled)

(init subc2 disabled)

(waiting subc1 init)

(waiting subc2 disabled))

Policies

Policies in conversations are just the same as policies in the “global” context of the agent. But the they often
play a special role in controlling the state (and other variables) within the conversation as a side effect of
the execution of policies. Both the antecedent and the :precondition part of the conversation’s policies are
evaluated in the context of the the conversations variables as explained above. The variables are ordinary lisp
symbols in the Lisp environment, so they are easily used to determine if a policy can fire. Most policies in a
conversations turn themselves on and off by including a clause in the :precondition that evaluates to true
only if the conversation is in a certain state (or set of states).

In addition, when a policy is fired it may also re-assign values to conversation variables (including the
conversation’s state variable), thus affecting the outcome of future policy applications. Typically, conversation
policies will change the conversation’s state variable.

Subconversations (Conversaionlets)

Subconversations are really no different from top-level conversations. They have their own sets of variables and,
in particular the value of the state variable can be tied to specific values of the containing conversation using
the :bind-state parameter in the containing conversation. Thus, if all the policies within within the policies
have preconditions (:precondition) that require specific states, and the parent state value corresponds to a
non-existent state variable in the subconversation, then the subconversation is completely disabled. In a like
manner, subsets of the subconversation’s policies can also be turned off and on.

11 Scripting language: Lisp
Thread

AbstractProcess

TransientAgent

LAC Agent

CooperationDomain

Common Lisp, as incorporated and applied in CASA, offers the programmer a great deal
of design and implementation flexibility when creating agents. In terms of governing
agent behaviour, policies, ontologies, and initialization scripts may all be defined with
Common Lisp. As well, casaLispOperators may be implemented by the programmer
to facilitate the interaction between the behaviour-defining scripts and the actual agent
software written in Java.

CASA’s Lisp implementation is Armed Bead Common Lisp [Common-Lisp.net, 2011, Evenson et al., a], an
open-source project. This implementation fails roughly only 20 out of 21,702 tests in the ANSI test suite for
Common Lisp[Americal National Standards Institute (ANSI), 2004].

July 21, 2014 Knowledge Science Group, University of Calgary 37 of 108

CASA USER MANUAL 11. SCRIPTING LANGUAGE: LISP

Common Lisp is a very simple language whose entire syntax is based on parenthesis-delimited lists. For
a on-line Common Lisp references, see Guy Steel’s Common Lisp the Language, 2nd Edition[Steele, 1990] at
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html.

11.1 Ontologies

The there a 4 functions are:

ont.relation - define a relationship

ont.type - declare a terminological type

ont.assert - set the relationship between elements

The ont.relation function determines how children and ancestors on the subsumption lattice relate to
each other. It takes the following arugments:

The name of the relationship

:base - the relation upon which the newly declared relationship is based

:inverse - boolean

:reflexive - boolean

:symmetric - boolean

:transitive - boolean

:assignable - boolean

For example, the definition of a parent relationship may take this form:

(ont.relation "isa-parent")

The programmer can now define other relationships using isa-parent relationship as a base class:

(ont.relation "isa-child"

:base isa-parent

:inverse :assignable)

Note that an :assignable relationship is one that can be used as the first argument of the ont.assert

function. The definitions of the other boolean parameters for this function correspond to the common mathe-
matical ones.

Before the ont.assert function can be called to define the ontology, the programmer must declare at least
one terminological type using the ont.type function. It takes one argument: a string describing the new type.

(ont.type "TOP")

Assuming TOP is the root element, the programmer can now use the ont.assert function to build the
agents’ ontology:

(ont.assert isa-parent "action" TOP)

(ont.assert isa-parent "LAC_closing" action)

(ont.assert isa-parent "act" action)

(ont.assert isa-parent "chat_message" action)

See Figure 6 for a more complete example.

July 21, 2014 Knowledge Science Group, University of Calgary 38 of 108

http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html

CASA USER MANUAL 11. SCRIPTING LANGUAGE: LISP

11.2 Initialization

Initialization Scripts CASA initialization scripts may be written entirely in Common Lisp. As such, the pro-
grammer may utilize the full breadth of the Common Lisp language. What follows is a description of a few key
functions required to initialize a typical multi-agent system.

The first, and most important, function is new-agent. It takes the following parameters:

type - the type (Java class) of agent to be created

name - name of the agent (java.lang.String)

port - port of the agent (-ve value indicates to ’hunt’) (java.lang.Integer)

:process - specifies the process in which to run the agent (i.e., “LAC”, “CURRENT”, or “INDEPENDENT”)

:lacport - specifies the port of the LAC the agent registers with (-1 indicates not to register) (java.lang.Integer)

:shortcutting - set shortcutting in message protocols on or off (java.lang.Boolean)

:ack - turn acknowledge (ack) requirement on or off (java.lang.Boolean)

:markup - specify the markup language for inter-agent messages (affects the entire process globally) (i.e.,
“KQML” or “XML”)

:persistent - turn persistent saving of agent data on or off (java.lang.Boolean)

:root - root directory for the CASA files (LAC only) (java.lang.String)

:debug - turn CASA debugging on or off for the agent’s entire process (java.lang.Boolean)

:trace - turn set the trace flags. Bits are: 1=off, 2=on, 4=monitor, 8=toFile) (java.lang.Integer)

:tracefile - turn file tracing on or off (only effective if trace=true) (java.lang.Boolean)

:tracewindow - turn the trace window on or off (only effective if trace=true) (java.lang.Boolean)

:tracetags - a java.lang.String list of trace tags (identifiers) to add—remove. Remove a tag by preceding it
with a ’-’. Current valid tags: calls, msg, msgHandling, warning, info, policies, commitments

:interface - the fully-qualified Java class name of the interface for the agent to use. Defaults to an appropriate
window interface. The special [name] ’text’ yields a default text interface; ’none’ specifies the agent should
have no interface

:guard - turn the guard (secure) on or off for the agent (java.lang.Boolean)

:proxies - add proxies to the agent (a semi-colon separated list of fully-qualified class names) (java.lang.String)

:strategy - the desired strategy: SC, reactive, BDI, or SC3 (java.lang.String)

:security - the desired security package. Currently, “casa.security” or “none”

:ontologyengine - the Java class for the ontology engine (currently, either casa.ontology.CASAOntology or
casa.util.TypeHierarchy)

July 21, 2014 Knowledge Science Group, University of Calgary 39 of 108

CASA USER MANUAL 11. SCRIPTING LANGUAGE: LISP

:ontologyfile - the file from which the ontology engine should read initialization data (java.lang.String)

Agent-specific keys - any other key/value pairs read by a subclass of Agent or TranientAgent

The new-agent function takes the following form:

(new-agent "casa.LAC" "ResearchLAC" 9000

:process "CURRENT" :markup "KQML"

:trace :traceFile :strategy "sc3"

:traceTags

"warning,msg,msgHandling,commitments,

policies5,lisp,conversations")

Given CASA’s threaded nature, it is often necessary to allow certain critical agents (the Local Area Coor-
dinator, especially) time to fully initialize. If the LAC is not given enough times, it may be the case that the
agents that depend on the LAC will initialize before it is ready. The simplest way to solve this problem is to
delay execution of the script long enough so that critical agents will be fully initialized before their dependents.
The sleep function allows the programmer to delay execution. The following example shows how sleep may
be called to delay script execution for five seconds:

(sleep 5)

Besides the LAC, there are two other types of agents that are of interest here: the TransientAgent

and the CooperationDomain. TransientAgent is the base class from which CASA agents typically extend
(including the LAC and CooperationDomains). In the example that follows, they will take the place of the more
specialized agents the programmer may create. The CooperationDomain agent, as its name suggests, provides
a proxy through which agents communicate and form partnerships. The following example demonstrates how
to initialize two TransientAgents and a CooperationDomain:

(new-agent "casa.TransientAgent" "Alice" 6700

:LACPORT 9000 :markup "KQML"

:persistent :trace :traceFile :strategy "sc3"

:traceTags

"warning,msg,msgHandling,commitments,

policies,conversations")

(new-agent "casa.TransientAgent" "Bob" 6701

:LACPORT 9000 :markup "KQML"

:persistent :trace :traceFile :strategy "sc3"

:traceTags

"warning,msg,msgHandling,commitments,

policies,conversations")

(new-agent "casa.CooperationDomain" "CD" 8700

:LACPORT 9000 :markup "KQML"

:persistent :trace :traceFile :strategy "sc3"

:traceTags

"warning,msg,msgHandling,commitments,

policies,conversations")

Once initialized, the agents can be scripted to join the CooperationDomain in the following manner:

(sleep 5)

(tell "6700" "(join \"8700\")")

(tell "6701" "(join \"8700\")")

July 21, 2014 Knowledge Science Group, University of Calgary 40 of 108

CASA USER MANUAL 11. SCRIPTING LANGUAGE: LISP

The tell function sends a request/execute message to the agent URL specified (here, the agents’ port
numbers). The content of that message specifies the requested action. Note that the content contains string
data, which necessitates the use of escaped quotes.

11.3 Custom Lisp Operators

All of the Common Lisp functions seen in the previous section were defined with the abstract casa.abcl.casaLispOperator

class in Java. These classes may be declared anywhere the programmer feels appropriate. Once declared static

with the necessary method implemented, they may be used in the same way as any Common Lisp command.
A casaLispOperator object takes four parameters:

1. The name of the Common Lisp function (java.lang.String)

2. The list of arguments required by the function (java.lang.String)

3. The class of the agent to which this function is registered (extends casa.TransientAgent)

4. Any number of optional, comma-separated function synonyms (java.lang.String...)

Of the four parameters the Common Lisp argument list requires the most explanation. As specified, the
list is simply an ordinary String. In its simplest form it states the names of the parameters, all separated by
spaces. For instance, the following would be an acceptable to casaLispOperator’s second parameter:

"PERFORMATIVE ACT RECEIVER"

A casaLispOperator with an argument list specified this way requires three parameters. The names
provided to these parameters are used by the abstract casaLispOperator class to retrieve the data passed to
the Common Lisp function. For example:

String receiver = params.getJavaObject("RECEIVER");

In addition to the parameter names, the argument list can accept two types of documentation strings: type
data, which is prefixed with a @, and a simple description, which is prefixed with a !. Each documentation
string must be enclosed in its own set of double quotes. For example:

"\"!Sends a message to another agent.\" "

+ "MESSAGE \"@casa.MLMessage\" \"!The message to send\" "

Here, the overall purpose of the function is described (i.e., “Sends a message to another agent”) , the
parameter name is declared (i.e., “MESSAGE”), and the parameter’s expected type and description are provided
(i.e., type: casa.MLMessage, description: “The message to send”).

casaLispOperator also allows the programmer to specify &optional, &rest, &key, and &allow-other-keys

parameters usual to Common Lisp. Without touching on the purpose of each parameter-type, the following
demonstrates how they are implemented (further to the example above):

"\"!Sends a message to another agent.\" "

+ "MESSAGE \"@casa.MLMessage\" \"!The message to send\" "

+ "&KEY "

+ "PROXY \"!Send the message through the indicated proxy (optional)\" "

July 21, 2014 Knowledge Science Group, University of Calgary 41 of 108

CASA USER MANUAL 11. SCRIPTING LANGUAGE: LISP

Once the new casaLispOperator has been instantiated, it is good practice to immediately define the
object’s abstract execute method, which takes three parameters:

1. The agent object (casa.TransientAgent)

2. A parameter list (casa.abcl.ParamsMap)

3. The agent’s user interace (casa.ui.AgentUI)

Since casaLispOperators are declared static (as mentioned previously), the agent object is necessary
to make method calls. The agent’s user interface allows the programmer to output information to the agent
window wherever appropriate. The parameter list contains the parameters passed to the function declared. The
tell function’s execute method is shown below:

1 @Override

2 public Status execute(TransientAgent agent, ParamsMap params, AgentUI ui) {

3 try {

4 URLDescriptor url = new URLDescriptor((String)params.getJavaObject("AGENT"));

5 String content = (String)params.getJavaObject("COMMAND");

6 return agent.sendMessage(ML.REQUEST,ML.EXECUTE, url, ML.CONTENT, content);

7 } catch (URLDescriptorException e) {

8 return new Status(-6,"Bad URL: "+e.toString());

9 }

10 }

execute returns a Status or StatusObject. The latter extends the former. The Status object contains
an integer execution code (negatives indicate an error, by convention) and a String explanation. There are
times, however, when it is appropriate to return an object upon execution. The StatusObject meets this
need. For instance, if a Boolean value is desired, execute’s return statement may look like this:

return new StatusObject<Boolean>(0, false);

What follows is a compete example (from TransientAgent) showing the coding of the Lisp command
agent.show-conversations:

1 /**

2 * Lisp operator: (AGENT.SHOW-CONVERSATIONS)

3 * Show the agent’s current or known conversations.

4 */

5 @SuppressWarnings("unused")

6 private static final CasaLispOperator AGENT__SHOW_CONVERSATIONS =

7 new CasaLispOperator("AGENT.SHOW-CONVERSATIONS", "\"!Show the conversations -- known, current, or a "+

8 + "specific (known) one.\" "

9 +"&OPTIONAL NAME \"@java.lang.String\" \"!If present shows the named template, otherwise all are shown.\" "

10 +"&KEY "

11 +"CURRENT \"!Show the current conversations for the current agent; ignores the NAME parameter.\" "

12 +"(VERBOSE 1) \"@java.lang.Integer\" \"!0=only names; 1=state with no policies; 2=all\" "

13 , TransientAgent.class, "SCONV")

14 {

15 @Override public Status execute (TransientAgent agent, ParamsMap params, AgentUI ui, Environment env) {

16 int verbose = (Integer)params.getJavaObject("VERBOSE");

17 boolean current = params.containsKey("CURRENT");

18 String name = (String)params.getJavaObject("NAME");

19

20 agent.conversations.purge();

21

July 21, 2014 Knowledge Science Group, University of Calgary 42 of 108

CASA USER MANUAL 12. OBSERVERS

22 if (current || name==null) {

23 Pair<Integer, String> ret = agent.getConversationsReport(current, verbose);

24 ui.println(ret.getSecond());

25 return new StatusObject<Integer>(0,ret.getFirst());

26 }

27

28 int count = 0;

29 Conversation conv = Conversation.findConversation(name);

30 if (conv==null)

31 ui.println("No such conversation");

32 else {

33 if (verbose==0)

34 ui.println(conv.getName()+(conv.getId()==null?"":(", id:"+conv.getId()+", state:"+conv.getState())));

35 else

36 ui.println(conv.toString(0,verbose==1));

37 count++;

38 }

39 return new StatusObject<Integer>(0,count);

40 }

41 };

Lines 7&8 demonstrate a documentation line, line 9 demonstrates an optional (unnamed) parameter, lines 10-12
demonstrate the use of (optional) keyword parameters, line 12 demonstrates the use of a default value (1 in this
case), and line 13 demonstrates the declaration of synonym.

12 Observers

CASA uses the Observer pattern [Gamma et al., 1994] for several different purposes. The most important
of which is to enable flexible user interfaces: User interfaces are normally not know to agents, but rather,
interfaces are observers of agents. This allows agents to have a variety of interfaces, and even multiple interfaces
simultaneously.

A problem arises in CASA’s agent implementation though: The agent classes inherit from Thread, and Java’s
implantation of Observer from Gamma et al. makes the Observable class a class, so the agent classes cannot also
inherit from Obervable. CASA gets around that problem by implementing the interface casa.CASAObservable
(which can stand in for Observable) and the class casa.CASAObservableObject (which extends Observable

and implements CASAObservable.

CASAObservable also adds the capability of remote (inter-process and inter-computer) observation via
CASA’s inter-agent message passing capability.

To observe an agent’s events you should implement the interface java.util.Observer. The update

(Observable, Object) method you will implement will be called for each agent event. Unlike a typical
update(), the first (Observable) parameter will NOT be a pointer to the agent (it will be a pointer to
an ObservableObject, which you don’t usually want. However the second (Object) argument will be an
ObserverNotification object, through which you can access the agent, event type (which will be subtype of
event in the ontology), and any relevant auxiliary object, depending on the event type. These are accessed
through the ObserverNotification object’s getAgent(), getType(), and getObject() methods respectively.

July 21, 2014 Knowledge Science Group, University of Calgary 43 of 108

CASA USER MANUAL 13. USER INTERFACES

13 User Interfaces

CASA’s interfaces are usually not known to an agent at all. Instead, they are observers (see §12) of an agent.
In this way, CASA agents can support as many and as varied interfaces as one would want.

However, CASA agents usually support one or more default user interfaces. By default, agents create
a graphical user interface of a subclass of casa.ui.TransientAgentInternalFrame. The agent constructor
parameter “INTERFACE” allows one to switch to the default text-only interface using the value “text” (see
Appendix §E). The default text user interface is a subclass of casa.ui.TextInterface.TextInterface.

The default text user interface is nothing more than an Lisp interpreter in the context of the agent. The
default graphical user interface is more complex, but quite flexible, and is explained in the next subsection.

13.1 The Default GUI

Figure 13: The default GUI produced by class casa.ui.TransientAgent-

InternalFrame.

Figure 13.1 shows the default GUI as
produced by the casa.ui.Transient-

AgentInternalFrame class. You can re-
place it by overriding the method make-

DefaultInternalFrame(TransientAgent

agent, String title, Container aFrame),
which returns a casa.ui.Transient-

AgentInternalFrame. If you want to
replace it with an interface that is not a
subclass of casa.ui.TransientAgent-

InternalFrame, then override method
makeDefaultGUI (String[] args)) which
must only return a class implementing
the casa.ui.AgentUI interface.

You can add your own tab to
a default interface by calling its
addTab(String title, Component component,

boolean visible) method. The easiest way to do this is to subclass and override the agent’s makeTabbed-
Pane() method. For example, to add a tab labeled “My Tab” containing a JPanel:

1 @Override

2 protected JTabbedPane makeTabPane() {

3 JTabbedPane ret = super.makeTabPane();

4 addTab("My Tab", new JPanel());

5 return ret;

6 }

Likewise, you can add or remove items from the the menu bar using the following methods:

public JMenu getMenuBarMenu(String name)

public void insertMenuBar(JMenu menu, int location)

public void insertMenuBarBefore(JMenu menu, String name)

public void insertMenuBarAfter(JMenu menu, String name)

public void replaceMenuBar(JMenu menu)

To use the above methods, it’s easiest to subclass and override the makeMenuBar() method:

1 @Override

2 protected JMenuBar makeMenuBar () {

July 21, 2014 Knowledge Science Group, University of Calgary 44 of 108

CASA USER MANUAL 14. SECURITY

3 JMenuBar ret = super.makeMenuBar();

4 <your code>

5 return ret;

6 }

14 Security

15 Persistence

An agent is persistent if it inherits from the casa.Agent class and sets the attribute CasaPersistent to true
(which can be done either in the agent code of via the command line). The agent stores the information in a file
according the the LAC’s setup. All you have to do to make an attribute persistent is to mark it’s declaration
with the @CasaPersistent annotation. For example:

// a simple persistent boolean attribute that will

// be stored in the properties under "myFlag"

@Persistent

boolean myFlag;

//a persistent object that will be stored in the

// properties under "options.x" and "options.y"

// because it has at least one @CasaPersistent

// attribute itself.

public class Options {

@CasaPersistent int x = 4;

@CasaPersistent double y = 7.5;

}

@CasaPersistent

Options options;

// a persistent object that will be stored in the

// properties under "stuff" in the standard CASA

// serial format (because none of it’s properties

// are marked @CasaPersistent). Note that

// the class Stuff MUST have a toString()

// method and a corresponding constructor

// that takes a single string.

public class Stuff {

int x = 4;

double y = 7.5;

public Stuff() {...}

public Stuff(String persistData) {...}

@Override

public toString() {...}

}

@CasaPersistent

Stuff stuff = new Stuff();

An object that is not part of the agent but can access the agent (such as UI object) can store and retrieve
information with the agent. For example, to store the boolean variable isIcon with the agent in the variable
agent under the name “isIcon”:

agent.setBooleanProperty("isIcon",isIcon);

July 21, 2014 Knowledge Science Group, University of Calgary 45 of 108

CASA USER MANUAL 16. DEBUGGING/LOGGING (TRACE)

Later, or in a new invokation of the agent, the stored value of isIcon can be retrieved:

Boolean isIcon = false; //establish a default

try { // if it isn’t stored, it will throw

isIcon = lac.getBooleanProperty("isIcon");

} catch (PropertyException e) {

// just accept the default

}

16 Debugging/Logging (Trace)

Due to it’s dynamic and interpretive nature, CASA agents can be difficult to debug. To facilitate tracing what’s
going on in the program, CASA provides a flexible logging system. If the agent is tracing (see §16.3), it will
record information in any of several places. One of the places is a file name with the agent’s name and the
extension “.log” in the current directory. The agent will write status information to this file as it runs. See §16.4
for details about the format of this file. Trace logging also generates observer events, so any interface observing
the agent may pick up this information. For example, one can create a trace window that shows a live listing of
these messages. In another example, the default agent interface’s “Command” tab can display these messages
in real time (use the command-tab’s right-click popup menu to turn this on).

The information that gets saved to the trace file is controlled at run time by setting trace tags: a particular
message is printed only if the associated trace tag is switched on. Trace tags are in the form of a string topic
name immediately followed optionally by a single-digit severity specifier. For example, “warning9” is trace tag
that causes an agent to print all warning messages to the greatest detail on topic “warning”. Trace tag topic
names can be any alpha-numeric string not containing white space and not ending in a digit. Trace tag severity
specifiers can be any single digit from 0 to 9. If the trace tag severity specifier is missing, it is taken to the 0.
Therefore, “msg” is taken to be the same as “msg0”.

16.1 Specifying Trace Tags

Users specify tags either at the time an agent is instantiated, or anytime at run time. If an agent is persistent
(see §15) trace tags may also be recovered from the persistence file between invocations. To specify trace tags
at agent instantiation, use the :trace-tags keyword parameter on the agent.new-agent Lisp command. To
specify trace tags at run time, use one of:

• the Agent | Options dialog box

• the run-time Lisp command (agent.options :options.traceTags ...),

• the Java method AbstractAgent.addTraceTags(String)

• the Java method Trace.addTraceTags(String).

The syntax of setting trace tags in all of these ways is a comma-separated list of tags, optionally preceded by a
“-” sign to indicate “remove it” instead of “add it”:

[-] <name><digit> [, [-] <name><digit> ...]

For example:

(agent.options :options.traceTags "error,warning6,-msg,-commitments")

July 21, 2014 Knowledge Science Group, University of Calgary 46 of 108

CASA USER MANUAL 16. DEBUGGING/LOGGING (TRACE)

The special trace tag error is always implicitly on.
Programmers specify trace tags and severities merely by mentioning them in a call to any of AbstractProcess’s

print() methods. For example,

println("msg5", "Malformed message");

will log an entry with the string “Malformed message” to the trace file only if the tag “msg” is set to severity
5 or greater (“msg5”, “msg6”, ...).

16.2 Using println()

CASA agents have several forms of println(). These are listed here:

1 println(<tag>, <message>);

2 println(<tag>, <message>, <Throwable>);

3 println(<tag>, <message>, <Status>);

4 println(<tag>, <message>, <option-flags>);

5 println(<tag>, <message>, <Throwable>, <option-flags>);

6 println(<tag>, <message>, <Status>, <option-flags>);

The message will also always be logged if <tag> is null, an empty string or “error”. Otherwise, the message
will be ignored unless the appropriate tag has been set to the appropriate level.

In forms 2 and 5, the message will be conditionally logged followed by the message and stack trace found in the
Throwable object. As a special case, if <Throwable> is null, then a stack trace will be constructed (starting with
the caller of the println() method). Note that println(<tag>, <message>, null) is ambiguous between
forms 2 and 3, so you will need to make the call as println(<tag>, <message>, (Throwable)null).

Form 3 conditionally logs the message along with an appropriately formatted Status object.
The behaviour of the println() methods may be modified by using the option-flags parameter. Option

flags include the following:

• Trace.OPT SUPRESS STACK TRACE: Default for print methods that do not include an Exception parameter
or method calls that have a null Exception parameter.

• Trace.OPT FORCE STACK TRACE: Default for print methods that include an Exception parameter where
the Exception is non-null. Allowable, but expensive for other operations.

• Trace.OPT INCLUDE CODE LINE NUMBER: Default for error and warning tags. And expensive operation.

• Trace.OPT SUPPRESS AGENT LOG: Only applicable to the process-wide Trace; forces output to sysout rather
than trying to find an agent.

• Trace.OPT COPY TO SYSOUT: Copies output to sysout.

• Trace.OPT COPY TO SYSERR: Copies output to syserr.

• Trace.OPT SUPPRESS HEADER ON SYSOUT: Suppresses the header block and ¿¿¿¿ flagging when printing to
sysout or syserr

If you want to log to an agent’s file, but there is no agent is scope, you can use the state Trace family of
methods that exactly mirrors the println() family of methods. For example, Trace.log(<tag>, <message>)

July 21, 2014 Knowledge Science Group, University of Calgary 47 of 108

CASA USER MANUAL 17. ADDING EXTENSIONS

or Trace.log(<tag>, <message>, <Throwable>). These methods search for the appropriate in-scope agent
using the current Thread as a clue, and then call that agent’s println() method. If an agent is not found,
the message is similarly logged either the process-wide trace file (“casaOut¡digits¿.log”) or to System.out or to
both.

16.3 Turning on tracing

Logging can be turned on or off at the time an agent is instantiated, or anytime at run time. If an agent
is persistent (see §15) tracing behaviour may also be recovered from the persistence file between invocations.
To specify tracing at agent instantiation, use the :trace keyword parameter on the agent.new-agent Lisp
command. To specify trace tags at run time, use either the Agent | Options dialog box, or the run-time Lisp
command (agent.options :options.trace ...).

The value used in all these cases is an integer interpreted as a bit vector with the following interpretations,
as per Table 4.

Bit Value Meaning

0 1 turn tracing off
1 2 turn tracing on
2 4 trace to a separate logging window
3 8 trace to a file in the current directory named <agent-name>.log

Table 4: Bit meanings for the :trace keyword.

16.4 Trace file format

Figure 14 shows a typical log file output. The first line starts with “∗ ∗ ∗” and lists the date. After that,
there are several lines similarly starting with “∗ ∗ ∗” that give further information. Every log entry may have
multiple lines but always starts with a header, which is bracketed by “[∗” and “∗]”. The entry terminates when
either another header is encountered, or a special line is encountered. A special line is a line that starts with
either “>>>” or “<<<”. These special lines are merely flags for human readability to delineate error messages
(long lines of “>”s) and warning messages (shorter lines of “>”s), and these may be safely ignored by parsers.

Headers are always between “[∗” and “∗]” brackets and contain the following colon-delineated information:

header :- [* <time> : <agent-name> : <trace-tag> : <tread-name> *]

time :- <hour> . <min> . <sec> . <millisec>

The error and warning starting lines (“>>>”) also contain the complete method name and source code file and
line number of the caller of the println(). (Or at least CASA’s best guess...)

17 Adding extensions

CASA has three types of extensions: Code extensions, tab extensions and Lisp-script extensions. The first
two are java code extensions that exist in jar files. Lisp-script extension are Lisp files that can be con-
veniently executed form the Tools|List Scripts menu. All extensions reside in the either the directory
~/.casa/extensions/ or the CASA executable jar file in the directory /extensions/.

July 21, 2014 Knowledge Science Group, University of Calgary 48 of 108

CASA USER MANUAL 17. ADDING EXTENSIONS

*** Started log at Fri Apr 04 16:23:00 MDT 2014 ***

*** header format: [* <timestamp> : <traceName> : <tagNameAndDigit> : <TreadName> *]

*** where <tracename> is usually the agent name.

[*16.23.01.502:coolness:msg:coolness-subthread0*] Sending message (TCP/IP):

(request

:act register_instance

:sender casa://kremer@10.0.1.2:8700/casa/CooperationDomain/coolness

:receiver casa://10.0.1.2:9000

:reply-by "Fri Apr 04 16:24:01 MDT 2014"

:reply-with casa://kremer@10.0.1.2:8700/casa/CooperationDomain/coolness--0

:conversation-id casa://kremer@10.0.1.2:8700/casa/CooperationDomain/coolness--0

:language casa.*

:language-version 1.0

:content "[\"(casa.URLDescriptor)\\\"casa://kremer@10.0.1.2:8700/casa/CooperationDomain/coolness\\\"\", \"(...

:priority 10

:timeout "Wed Dec 31 17:00:10 MST 1969"

)

>>>>>>>>>>>>>>>>>>>>>>>>> casa.TransientAgent$63.run(TransientAgent.java:4182)

[*16.23.11.506:coolness:error:coolness-subthread0*] TransientAgent failed to register with LAC: request timed...

<<<<<<<<<<<<<<<<<<<<<<<<<

>>>>>>>>>>>>> casa.CasaObservableObject.deleteObserver(CasaObservableObject.java:377)

[*16.23.11.900:coolness:warning:coolness-subthread0*] Attempt to delete Observer "casa.AbstractProcess$1Abst...

casa.AbstractProcess$1AbstractProcess_MsgObserverEvent-38(event_SCPerformAction), coolness, 0 observers,

casa.AbstractProcess$1AbstractProcess_MsgObserverEvent-36(event_SCPerformAction), coolness, 0 observers,

casa.AbstractProcess$1AbstractProcess_MsgObserverEvent-37(event_SCPerformAction), coolness, 0 observers,

casa.AbstractProcess$1AbstractProcess_MsgObserverEvent-39(event_SCPerformAction), coolness, 0 observers,

Stack trace::

casa.CasaObservableObject.deleteObserver(CasaObservableObject.java:377)

casa.AbstractProcess.deleteObserver(AbstractProcess.java:2168)

casa.event.MessageObserverEvent.cancel(MessageObserverEvent.java:111)

casa.AbstractProcess.sendRequestAndWait(AbstractProcess.java:1462)

casa.TransientAgent$60.run(TransientAgent.java:3610)

java.lang.Thread.run(Thread.java:680)

<<<<<<<<<<<<<

Figure 14: An example log file listing (edited).

You can see the extensions loaded by using the standard agent interface’s menu item Tools|Extensions to
display a dialog box listing the tools.

17.1 Code extensions

This extension constitutes a java class that will be added into the class path at runtime. If the attribute
autoload is true, then that class will be loaded into memory, causing any statics in the class to be initialized.
All code extensions are found in a jar file, and are defined in the jar’s manifest file in sections named code and
optionally followed by a string of digits (which allows one to define several different code extensions in a single
jar file).

Code extensions are not intrinsically associated with any particular agent (but subtypes of code extensions
may be).

This extension is affected by the following attributes defined in manifest sections beginning with code:

Main-Class (required) The fully-qualified class name in the jar file. If autoload is true, then this class static

July 21, 2014 Knowledge Science Group, University of Calgary 49 of 108

CASA USER MANUAL 17. ADDING EXTENSIONS

initialization will occur on loading the CASA application. If this attribute is omitted, and there is a
Main-Class attribute defined in the manifest’s main section, then this value will be used by default.

autoload (optional) iff “true” the class will be loaded into memory and it’s static initialization will occur when
the CASA application loads. The default is “true”.

Extension-Name (optional) This is the display name of the extension. The default is the name of the class.

doc (optional) A short documentation string that may be used for mouse-overs, etc.

17.2 Tab extensions

Tab extensions specializations of code extensions that are UI elements that appear as tabs on the agents’ default
GUI. The class (Main-Class) that defines a tab extension is a Swing Component. The implementation is “lazy”
in that the Main-Class is never loaded and instantiated until the tab is actually displayed.

Tab extensions are associated with a particular agent and a particular agent GUI frame. The association is
restricted to using attributes agenttype and frametype.

This extension is affected by the following attributes defined in manifest sections beginning with tab:

Main-Class (required) The fully-qualified class name in the jar file that defines a subtype of java.awt.Component
with a constructor with two parameters: (TransientAgent, AbstractInternalFrame). This will be in-
voked as the main component in the tab. If this attribute is omitted, and there is a Main-Class attribute
defined in the manifest’s main section, then this value will be used by default.

autoload (optional) iff “true” the tab will be will be displayed in the GUI, otherwise the user can choose Tools
| Tabs | <Extension-Name> to display the tab. The default is “false”.

TabName (optional) The name to appear on the tab itself. The default is the Extension-Name or the
Main-Class if necessary.

AgentType (optional) The fully qualified class name of that restricts the type of the agent this tab will apply
to. The default is “casa.TransientAgent”.

frametype (optional) The fully qualified class name of that restricts the type of the GUI frame this tab will
apply to. The default is “casa.ui.AbstractInternalFrame”.

doc (optional) A short documentation string that may be used for mouse-overs, etc.

Note that by default, the jar will NOT be loaded and tabs will NOT be displayed when the interface is initialized.
To display the tab interface use the menu bar ”Windows — Tabs — [tabName]”. To actually load the jar and
run the tab code, choose the tab to display it – the jar will only be loaded and run at that point.

Thus, a manifest might look like Figure 15. A target in an ANT script to build a jar with this manifest
would look like Figure ??:

17.3 Lisp-Script Extensions

Lisp script extensions are merely Lisp code files that can be executed in one of three contexts: at process
startup, at agent startup, or during agent runtime in the context of a GUI (typically by the use selecting some
element from the menu Tools|Lisp Scripts|...).

This extension is affected by the following attributes defined in manifest sections beginning with Lisp-Script:

July 21, 2014 Knowledge Science Group, University of Calgary 50 of 108

CASA USER MANUAL 17. ADDING EXTENSIONS

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.1

Created-By: 20.65-b04-462 (Apple Inc.)

Main-Class: CASA

casa-build-time: 2014/02/23 08:38 PM

Class-Path: .

Name: tabs0

Main-Class: casaTools.SCTab

TabName: SCs

agenttype: casa.TransientAgent

frametype: casa.ui.AbstractInternalFrame

autoload: false

Figure 15: An example manifest file in an CASA extension jar file.

<target name="distGenericBin" description="builds distribution binary jar" depends="setProperties">

<jar destfile="${distDir}/${distName}.jar" filesetmanifest="skip">

<manifest>

<attribute name="Main-Class" value="CASA"/>

<attribute name="Class-Path" value="."/>

<attribute name="casa-build-time" value="${build.time}"/>

<section name="tabs0">

<attribute name="Main-Class" value="casaTools.SCTab"/>

<attribute name="TabName" value="SCs"/>

<attribute name="agenttype" value="casa.TransientAgent"/>

<attribute name="frametype" value="casa.ui.AbstractInternalFrame"/>

<attribute name="autoload" value="false"/>

</section>

</manifest>

<fileset dir="/Apple/CASATools/bin"/>

</jar>

</target>

Figure 16: An example Ant target to build the manifest in Figure 15.

AgentType (optional) The fully qualified class name of that restricts the type of the agent this script will
apply to. The default is “casa.TransientAgent”.

frametype (optional) The fully qualified class name of that restricts the type of the GUI frame this script will
apply to. The default is “casa.ui.AbstractInternalFrame”.

once (optional) If this attribute is set to true, the script will be executed at application startup time and will
NOT appear in any menus, etc.

oncePerAgent (optional) If this attribute is set to true, the script will be executed at agent startup time (at
the end of thread initialization) and will NOT appear in any menus, etc.

doc (optional) A short documentation string that may be used for mouse-overs, etc.

July 21, 2014 Knowledge Science Group, University of Calgary 51 of 108

Appendices

52

CASA USER MANUAL A. SEARCHING FOR RESOURCES

Identifier Path Type Default Explanation

LACdefaultport org/ksg/casa env, user,
system

9000 The TCP/IP port for the LAC an agent will use if it is not
specified on in the agent’s startup.

synonymURLs org/ksg/casa user
knownTraceTags org/ksg/casa user, sys-

tem
The tr35 ace tags known to the system; these are built up
automatically over time.

router org/ksg/casa env, user,
system

The InetAddress in the form ¡int¿.¡int¿.¡int¿.¡int¿ that
CASA will use as the local host in URLs. If this
is not included, CASA will use the value returned by
InetAddess.getlocalHost()

rootDirectory org/ksg/casa env, user,
system

∼/.casa/ The root directory under which all the CASA persistent
data is stored.

casa.MLMessage-
subclasses

org/ksg/casa env, user,
system

Users should usually never use this preference, but if
you are having trouble loading a MLMessage subtype
class or it has an irregular name (other than “<markup-
specifier>Message”, then you can use this dictionary to
specify it explicitly. Otherwise, CASA will automatically
detect the subtype and add it to this preference (as long
as the subtype class is loaded by the loader early enough
in the startup process).

defaultMarkup-
Language

org/ksg/casa env, user,
system

KQML The default markup language to use when sending mes-
sages.

Table 5: CASA preference identifiers

A Searching for Resources

File resources (such as ontology files, lisp initialization files, etc) are searched as follows:

1. the directory specified in the system property casa.home (if casa.home is defined)

2. the directory specified in the system property casa.home, subdirectroy dataFiles (if casa.home is defined)

3. the directory specified in the system property user.home, subdirectory casa/dataFiles

4. the current working directory (“.”)

5. through the Java ClassLoader.getSystemResource() method, which picks up files included with the
CASA distribution.

B Preference Settings

This section documents the preferences CASA uses from the system-dependent preferences system. CASA
typically looks in the system environment variables, then the user preferences file (or registry), then the system
preferences file (or registry), but some values are only sought in a specific subset of these as documented in
Table 5. CASA’s environment variable names are always prefixed with “CASA ”.

Most systems have environment variables, and CASA can access them (read only) through the Java System
interface. Most systems also have a way to store user- and system- preferences, and CASA can access them
(read/write) through the Java System interface as well. User and System preferences are stored differently on
different systems. For example, in Windows, they are stored on in the system registry. On Mac OS/X the users
preferences file is stored in their home directory (∼/Library/Preferences/); the system preferences are stored

July 21, 2014 Knowledge Science Group, University of Calgary 53 of 108

CASA USER MANUAL C. MATCHING OPERATORS (EVENT DESCRIPTORS)

in /Library/Preferences/17 and are only persisted to disk if the user is an administrator. The files are named
org.ksg.casa.plist.

The search for these preferences is encapsulated by static method org.ksg.casa.CASA.String getPreference

(String prefName, String defaultValue, int operation), where operation is a disjunct of CASA.ENVIRONMENT,
CASA.USER, and CASA.SYSTEM (a zero will default to search all).

C Matching Operators (event descriptors)

Matching operators are usually 1-character symbols which appear between the colour (“:”) and identifier in key
specs in EventDescriptors and MsgEventDescriptors. For example,

(msgevent-descriptor event_messageSent :performative subscribe

:act (act ,the-act)

:sender client

:receiver server

:*language "FIPA-SL"

)

declares that the language field should match “FIPA-SL” using a regular expression match. The operators are:

= equal

! not equal

< isa (as per the agent’s ontology)

!< not isa

∗ regular expression comparison (as per java.util.regex.Pattern)

The default operator depends on the key. Defaults are:

performative: < (isa)

act: < (isa)

type: < (isa)

all others: = (equal)

D Properties, Parameters. Persistence, and Options

CASA’s PropertiesMap and ParamsMap classes look very similar. Both are dictionaries from String identifiers
to objects.ParamsMap is targeted at providing an interface between Lisp and Java, and always includes both
Lisp values and (more or less) equivalent Java values. It is also used to pass the many possible (and optional)
qualifiers to an agent constructor as an argument. PropertiesMap, on the other hand, is used to store values
destined to the persistent store in a flexible way. When a persistent CASA agent starts, it reads from the

17Note that on Mac OS/X Lion, only the root user may write to /Library/Preferences/ so CASA will only write user preferences
normally.

July 21, 2014 Knowledge Science Group, University of Calgary 54 of 108

CASA USER MANUAL E. COMMAND LINE QUALIFIERS

persistent store in to a PropertiesMap before further processing, and when it exits, it stores persistent data to
a PropertiesMap before writing it out to the persistent store.

A related data structure is the Options class which more-or-less mirrors the PropertiesMap but contains
direct, Java-native structures for much faster access. Since options “real” Java data structures they lack the
flexibility of dictionaries and every class that needs to additional options must create a new class that extends
the superclass’s Options class with it’s own. To do this, every class that uses an extended Options class needs
to override the makeOptions method and to return its correct version of the Options class. The options

E Command Line Qualifiers

If you are running CASA from the command line (front the .jar file), the command line is:

java -jar casa.jar options run-time-command

or, more specifically:

java -jar casa.jar casa.jar [-lLtT?] [-LAC [<port>]] [-NOLAC [<port>]] [-PROCESS [<port>]]

[-NOPROCESS] [-TAGS <tags>] [-HELP] [<lisp-command>]

where:

• l: Suppress automatically stating a LAC if there isn’t one (same as -NOLAC).

• L: Automatically start a LAC at port 9000 if there isn’t one (same as -LAC).

• t: turn tracing-to-file on.

• T: Use a text interface if there’s no command on the command line.

• ?, HELP: Prints this help text.

• LAC [port]: Automatically start a LAC at port port if there isn’t one (defaults to 9000).

• NOLAC [port]: Do not start a LAC, but expect a LAC at port port (defaults to 9000).

• PROCESS [port]: Automatically start a CASAProcess at port port (defaults to 9010).

• NOPROCESS [port]: Do not start a PROCESS, but run a simple agent that executes the lisp-command.

• TAGS [tag-list]: A comma-delimited list of tags that the process-wide trace should track. May contain
“-” prefixes and digit suffixes.

• lisp-command : any legal agent run-time command (runs dialogue mode if this is missing).

L, -LAC, -PROCESS, and -NOPROCESS are mutually exclusive. If none of -L, -LAC, -PROCESS, and -
NOPROCESS are present then if a LAC exists at -NOLAC (or 9000), then a CASAProcess is started at 9010
or above, otherwise a LAC is started. Qualifiers can be abbreviated to the shortest unique truncation.

The main class is casa.CASAProcess.
Agents are designed to be started up from the Lisp command (agent.new-agent type name port ...),

which allows for a large number of optional, named parameters. These are listed in Table 6. Most often the
command line startup’s Lisp command is a agent.newagent command. For example:

java -jar casa.jar -LAC (agent.newagent \"casa.TransientAgent\" \"Fred\" 8760)

starts up both a LAC agent and a TransientAgent agent named Fred on port 8760.

July 21, 2014 Knowledge Science Group, University of Calgary 55 of 108

CASA USER MANUAL F. LISP COMMANDS

Parameter Default Type Notes

TYPE The type (Java class) of agent to be created
NAME Name of the agent
:PORT 0 java.lang.Integer Port of the agent; 0: will choose; -ve: indicates to ’hunt’ (more than

0 proxies will affect the actual port number)
:PROCESS CURRENT Specifies the process in which to run the agent. The value can be:

• LAC (the LAC’s process);
• CURRENT, THIS, PROCESS (the process of the command line);
• INDEPENDENT, NEW (A newly generated process);
• a port number of an agent in another process; or
• a URL of an agent in another process.

:LACPORT 9000 java.lang.Integer Specifies the port of the LAC the agent registers with (-1 indicates
not to register)

:SHORT-
CUTTING

Set shortcutting in message protocols on or off

:ACK NIL java.lang.Boolean Turn acknowledge (ack) requirement on or off
:MARKUP KQML Specify the markuplanguage for inter-agent messages (effects the en-

tire process globally). KQML or XML
:PERSISTENT T java.lang.Boolean Turn persistent saving of agent data on or off. This only works for

agent inheriting from Agent.
:ROOT casa Root directory for the casa files (LAC only)
:DEBUG java.lang.Boolean Turn CASA debugging on/off for the agent’s entire process
:TRACE 0 java.lang.Integer Turn set the trace flags. Bits are (1=off, 2=on, 4=monitor, 8=toFile)
:TRACETAGS error A list of trace tags(identifiers) to add—remove. Remove a tag by

preceding it with a’-’. Current valid tags: calls, msg, msgHandling,
warning, info, policies, commitments.

:INTERFACE A fully-qualified java class name of the interface for the agent to use.
Defaults to an appropriate window interface. The special [name] ’text’
yields a default text interface; ’none’ specifies the agent should have
no interface.

:GUARD java.lang.Boolean Turn the guard (secure) on or off for the agent
:PROXIES java.lang.String Add proxies to the agent (a semi-colon separated list of fully-qualified

class names)
:STRATEGY sc3 Choose a strategy. sc, reactive, BDI, or sc3.
:SECURITY none Choose security package. Currently, ’casa.security’ or ’none’
:ONTOLOGY-
ENGINE

casa.ontology.v3.-
CASAOntology

java.lang.String The Java class for the ontology engine (currently, either
casa.ontology.CASAOntology or casa.util.TypeHierarchy)

:ONTOLOGY-
FILE

ontology.lisp The file from which the ontology engine should read initialization data

:NOWAIT Don’t wait for the agent to start before returning (it doesn’t matter
what the value is, if :nowait is present it doesn’t wait)

:PERSISTENT NIL java.lang.Boolean if this is NIL then this agent will not be persistent, otherwise it will
be (applies only the subtypes of the Agent class.

Table 6: Agent command line parameters. (Hyphens in parameter names are line wraps – there are not hyphens or
spaces in parameter names.)

F Lisp Commands

F.1 ?

? is a synonym for HELP (Section F.83).

July 21, 2014 Knowledge Science Group, University of Calgary 56 of 108

CASA USER MANUAL F. LISP COMMANDS

F.2 A2L

A2L is a synonym for ACT2STRING (Section F.7).

F.3 ACT

ACT is an external symbol in the COMMON-LISP-USER package. It is an undefined variable; its value is
”act”. Its function binding is #<SPECIAL-OPERATOR ACT>.

Lambda list

(&REST ACTIONS)

Function documentation

Return a new Act object. Defined in class class casa.Act.
Parameter Default Type Notes

ACTIONS def=”&REST” one or more action types as strings.

F.4 ACT.ACTION-AT

ACT.ACTION-AT is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR ACT.ACTION-AT>. Its synonyms are A2L.

Lambda list

(ACT INDEX)

Function documentation

Return the ACTION at index INDEX, where the first is index 0. Defined in class class casa.Act.
Parameter Default Type Notes

ACT The Act object or String to index into.
INDEX java.lang.Integer The index, beginning with 0

F.5 ACT.SIZE

ACT.SIZE is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ACT.SIZE>. Its synonyms are A2L.

Lambda list

(ACT)

Function documentation

Return the number of ACTIONS in the ACT. Defined in class class casa.Act.
Parameter Default Type Notes

ACT The Act object or String reprsentation of the Act object.

July 21, 2014 Knowledge Science Group, University of Calgary 57 of 108

CASA USER MANUAL F. LISP COMMANDS

F.6 ACT2LIST

ACT2LIST is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ACT2LIST>. Its synonyms are A2L.

Lambda list

(ACT)

Function documentation

Convert an Act JavaObject to a Cons list. Defined in class class casa.Act.
Parameter Default Type Notes

ACT casa.Act The Act object to return as a Cons list.

F.7 ACT2STRING

ACT2STRING is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ACT2STRING>. Its synonyms are A2L.

Lambda list

(ACT)

Function documentation

Convert an Act JavaObject to its string representation. Defined in class class casa.Act.
Parameter Default Type Notes

ACT casa.Act The Act object to return as a Cons list.

F.8 ADD-SINGLE-NUM-VALUE-KBFILTER

ADD-SINGLE-NUM-VALUE-KBFILTER is an external symbol in the COMMON-LISP-USER package. Its
function binding is #<SPECIAL-OPERATOR ADD-SINGLE-NUM-VALUE-KBFILTER>.

Lambda list

(PREDICATE)

Function documentation

Adds a single-value int filter to the KB. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

PREDICATE java.lang.String The name of the predicate to filter.

F.9 AGENT-IDENTIFIER

AGENT-IDENTIFIER is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR AGENT-IDENTIFIER>.

July 21, 2014 Knowledge Science Group, University of Calgary 58 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

(&KEY NAME TYPE PORT HOST USER DATA FRAGMENT)

Function documentation

return a URL based on the FIPA-like agent-identifier expression. Defined in class class casa.agentCom.URLDescriptor.
Parameter Default Type Notes

:NAME java.lang.String The name (file) of the agent (NOT including the path or
type).

:TYPE java.lang.String The type (path) of the agent.
:PORT java.lang.Integer The port.
:HOST java.lang.String The host.
:USER java.lang.String The user.
:DATA java.lang.String The data.
:FRAGMENT java.lang.String The fragment.

F.10 AGENT.ASYNC

AGENT.ASYNC is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR AGENT.ASYNC>.

Lambda list

(COMMAND)

Function documentation

Executes command in a separate thread. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

COMMAND The command to execute as either a String or a quoted
Cons.

F.11 AGENT.CREATE-EVENT-OBSERVER-EVENT

AGENT.CREATE-EVENT-OBSERVER-EVENT is an external symbol in the COMMON-LISP-USER package.
Its function binding is #<SPECIAL-OPERATOR AGENT.CREATE-EVENT-OBSERVER-EVENT>.

Lambda list

(EVENT-TYPE WATCHED-EVENT-TYPES &KEY CONVERSATION-ID)

Function documentation

Creates an EventObserverEvent to manage subscriptions. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

EVENT-TYPE java.lang.String The type of this event.
WATCHED-EVENT--
TYPES

org.armedbear.-
lisp.LispObject

The types of events to watch.

:CONVERSATION-ID java.lang.String An (optional) conversation ID if this event is to be associated
with a particular conversation.

July 21, 2014 Knowledge Science Group, University of Calgary 59 of 108

CASA USER MANUAL F. LISP COMMANDS

F.12 AGENT.DELETE-POLICY

AGENT.DELETE-POLICY is an external symbol in the COMMON-LISP-USER package. Its function binding
is #<SPECIAL-OPERATOR AGENT.DELETE-POLICY>.

Lambda list

(NAME)

Function documentation

Returns the agent’s policies as a string. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

NAME java.lang.String The name of the policy to be deleted.

F.13 AGENT.EXIT

AGENT.EXIT is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR AGENT.EXIT>.

Lambda list

NIL

Function documentation

Request this agent to exit. Note that this is only a request: the agent may refuse to exit or delay exiting. For
example, it may finish up pending requests before exiting.. Defined in class class casa.TransientAgent.

F.14 AGENT.FIND-FILE-RESOURCE-PATH

AGENT.FIND-FILE-RESOURCE-PATH is an external symbol in the COMMON-LISP-USER package. Its
function binding is #<SPECIAL-OPERATOR AGENT.FIND-FILE-RESOURCE-PATH>.

Lambda list

(&OPTIONAL FILENAMEONLY)

Function documentation

Searchs for and returns a filename in system-specific directories. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

FILENAMEONLY optional string name file to find

F.15 AGENT.GET-AGENT

AGENT.GET-AGENT is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR AGENT.GET-AGENT>.

July 21, 2014 Knowledge Science Group, University of Calgary 60 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

NIL

Function documentation

Returns the agent as a java object. Defined in class class casa.TransientAgent.

F.16 AGENT.GET-AGENTS-REGISTERED

AGENT.GET-AGENTS-REGISTERED is an external symbol in the COMMON-LISP-USER package. Its
function binding is #<SPECIAL-OPERATOR AGENT.GET-AGENTS-REGISTERED>.

Lambda list

(&OPTIONAL (PROPERTY all))

Function documentation

Sends a message to the LAC requesting the registered agents. The output will be printed on agents log (see
.release getAgentsRunning()). Defined in class class casa.TransientAgent.
Parameter Default Type Notes

PROPERTY optional def=”all” string name of the system property to show (or ’all’ to display
and return NIL)

F.17 AGENT.GET-AGENTS-RUNNING

AGENT.GET-AGENTS-RUNNING is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR AGENT.GET-AGENTS-RUNNING>.

Lambda list

(&OPTIONAL (PROPERTY all))

Function documentation

Sends a message to the LAC requesting the running agents. The output will be printed on agents log (see
.release getAgentsRunning()). Defined in class class casa.TransientAgent.
Parameter Default Type Notes

PROPERTY optional def=”all” string name of the system property to show (or ’all’ to display
and return NIL)

F.18 AGENT.GET-CLASS-NAME

AGENT.GET-CLASS-NAME is an external symbol in the COMMON-LISP-USER package. Its function bind-
ing is #<SPECIAL-OPERATOR AGENT.GET-CLASS-NAME>.

July 21, 2014 Knowledge Science Group, University of Calgary 61 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

NIL

Function documentation

Returns the agent class name as a string. Defined in class class casa.TransientAgent.

F.19 AGENT.GET-POLICIES

AGENT.GET-POLICIES is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR AGENT.GET-POLICIES>.

Lambda list

(&KEY ID (VERBOSE T))

Function documentation

Returns the agent’s policies as a string. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

:ID java.lang.Integer retrieve only the policy with this ID.
:VERBOSE def=T java.lang.Boolean set to Nil to get only the names of the policies.

F.20 AGENT.GET-URL

AGENT.GET-URL is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR AGENT.GET-URL>.

Lambda list

(&KEY OBJECT)

Function documentation

Returns the agent’s URL as a string. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

:OBJECT java.lang.Boolean Indicates that the URL should be returned as a URLDescrip-
tor object. (optional)

F.21 AGENT.GETUSEACKPROTOCOL

AGENT.GETUSEACKPROTOCOL is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR AGENT.GETUSEACKPROTOCOL>.

Lambda list

NIL

July 21, 2014 Knowledge Science Group, University of Calgary 62 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Return T if the agent is using the ACK parotocol, otherwise return Nil. Defined in class class casa.TransientAgent.

F.22 AGENT.INSTANTIATE-CONVERSATION

AGENT.INSTANTIATE-CONVERSATION is an external symbol in the COMMON-LISP-USER package. Its
function binding is #<SPECIAL-OPERATOR AGENT.INSTANTIATE-CONVERSATION>.

Lambda list

(NAME EVENT)

Function documentation

Instantiates a conversation from a template conversation. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

NAME java.lang.String The name of the conversation template.
EVENT casa.event.-

MessageEvent
The initial message event from which to instantiate the
conversation.

F.23 AGENT.ISA

AGENT.ISA is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR AGENT.ISA>.

Lambda list

(CHILD ANCESTOR)

Function documentation

Determines if the child act is a descendent of the given ancestor. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

CHILD java.lang.String The child act.
ANCESTOR java.lang.String The ancestor act.

F.24 AGENT.JOIN

AGENT.JOIN is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR AGENT.JOIN>.

Lambda list

(CD-URL)

July 21, 2014 Knowledge Science Group, University of Calgary 63 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Attempt to join the cooperation domain specified by the parameter URL. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

CD-URL The URL of the cooperation domain to join.

F.25 AGENT.LOAD-FILE-RESOURCE

AGENT.LOAD-FILE-RESOURCE is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR AGENT.LOAD-FILE-RESOURCE>. Its synonyms are LOAD-FILE-
RESOURCE.

Lambda list

(FILE)

Function documentation

Locates and loads a file, returning the path it was loaded from or NIL if it failed. Defined in class class
casa.TransientAgent.
Parameter Default Type Notes

FILE java.lang.String The file name (not the path) to load.

F.26 AGENT.MAKE-CONVERSATION-ID

AGENT.MAKE-CONVERSATION-ID is an external symbol in the COMMON-LISP-USER package. Its func-
tion binding is #<SPECIAL-OPERATOR AGENT.MAKE-CONVERSATION-ID>.

Lambda list

NIL

Function documentation

Returns a new, unique conversation ID string. Defined in class class casa.TransientAgent.

F.27 AGENT.MESSAGE

AGENT.MESSAGE is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR AGENT.MESSAGE>.

Lambda list

(PERFORMATIVE ACT RECEIVER &KEY CONTENT LANGUAGE LANGUAGE-VERSION REPLY-BY
&ALLOW-OTHER-KEYS)

July 21, 2014 Knowledge Science Group, University of Calgary 64 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Create a new message object. Defined in class class casa.TransientAgent.

Parameter Default Type Notes

PERFORMATIVE Any performative subtype of ’inform’ or ’request’
ACT An act name
RECEIVER The URL of the destination agent
:CONTENT The content part of the message (optional)
:LANGUAGE The language in which the content field is written (optional)
:LANGUAGE-VERSION The version of the language in which the content field is

written (optional)
:REPLY-BY java.lang.Integer Milliseconds to wait before giving up on a reply (optional)

Default=options.timeout

F.28 AGENT.NEW-AGENT

AGENT.NEW-AGENT is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR AGENT.NEW-AGENT>.

Lambda list

(TYPE NAME &OPTIONAL (PORT 0) &KEY (PROCESS CURRENT) (LACPORT 9000) SHORTCUTTING
(ACK NIL) (PERSISTENT T) (ROOT /casa/) (TRACE 0) (TRACETAGS error) INTERFACE GUARD
PROXIES (STRATEGY sc3) (SECURITY none) (ONTOLOGYENGINE casa.ontology.owl2.OWLOntology)
ONTOLOGYFILE ONTOLOGYFILTER NOWAIT FIPA-URLS &ALLOW-OTHER-KEYS)

Function documentation

Command that creates an agent. Defined in class class casa.TransientAgent$NewAgentLispCommand.

July 21, 2014 Knowledge Science Group, University of Calgary 65 of 108

CASA USER MANUAL F. LISP COMMANDS

Parameter Default Type Notes

TYPE The type (Java class) of agent to be created
NAME Name of the agent
PORT optional def=org.-

armedbear.lisp.-
Fixnum@0

java.lang.Integer Port of the agent; 0: will choose; -ve: indicates to ’hunt’
(more than 0 proxies will affect the actual port number)

:PROCESS def=”CURRENT” Specifies the process in which to run the agent. LAC, CUR-
RENT, or INDEPENDENT.

:LACPORT def=org.-
armedbear.lisp.-
Fixnum@2328

java.lang.Integer Specifies the port of the LAC the agent registers with (-1
indicates not to register)

:SHORTCUTTING Set shortcutting in message protocols on or off
:ACK def=NIL java.lang.Boolean Turn acknowledge (ack) requirement on or off
:PERSISTENT def=T java.lang.Boolean Turn persistent saving of agent data on or off (default to on)
:ROOT def=”/casa/” Root directory for the casa files (LAC only)
:TRACE def=org.-

armedbear.lisp.-
Fixnum@0

java.lang.Integer Turn set the trace flags. Bits are (1=off,2=on,4=-
monitor,8=toFile)

:TRACETAGS def=”error” A list of trace tags(identifiers) to add—remove. Re-
move a tag by preceding it with a’-’. Current valid
tags:calls,msg,msgHandling,warning,info,policies,commitments.-

:INTERFACE A fully-qualified java class name of the interface for the agent
to use. Defaults to an appropriate window interface. The
special [name] ’text’ yeilds a default text interface; ’none’
specifies the agent should have no interface.

:GUARD java.lang.Boolean Turn the guard (secure) on or off for the agent
:PROXIES java.lang.String Add proxies to the agent (a semi-colon separated list of fully-

qualified class names)
:STRATEGY def=”sc3” Choose a strategy. sc, reactive, BDI, or sc3.
:SECURITY def=”none” Choose security package. Currently, ’casa.security’ or ’none’
:ONTOLOGYENGINE def=”casa.-

ontology.owl2.-
OWLOntology”

The Java class for the ontology engine (currently, either
casa.ontology.v3.CASAOntology or casa.util.TypeHierarchy
or casa.ontology.owl2.OWLOntology)

:ONTOLOGYFILE The file from which the ontology engine should read inializa-
tion data

:ONTOLOGYFILTER java.lang.String The ontology filter
:NOWAIT Don’t wait for the agent to start before returning (it doesn’t

matter what the value is, if :nowait is present it doesn’t wait)
:FIPA-URLS java.lang.Boolean true: (agent-idenifier :name ”fred” ...); false: casa://10.0.1.-

12/casa/TransientAgent/fred:5400.

F.29 AGENT.NEW-INTERFACE

AGENT.NEW-INTERFACE is an external symbol in the COMMON-LISP-USER package. Its function binding
is #<SPECIAL-OPERATOR AGENT.NEW-INTERFACE>.

Lambda list

(CLASSNAME)

Function documentation

Adds a new interface to this agent. Defined in class class casa.TransientAgent.

July 21, 2014 Knowledge Science Group, University of Calgary 66 of 108

CASA USER MANUAL F. LISP COMMANDS

Parameter Default Type Notes

CLASSNAME java.lang.String The fully-qualified java class name of the new interface.

F.30 AGENT.OPTIONS

AGENT.OPTIONS is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR AGENT.OPTIONS>.

Lambda list

(&KEY &ALLOW-OTHER-KEYS)

Function documentation

Show or set options. No keys lists all options. A key with no value returns it’s value. A key with a value sets
the value. Defined in class class casa.TransientAgent.

F.31 AGENT.PAUSE

AGENT.PAUSE is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR AGENT.PAUSE>.

Lambda list

NIL

Function documentation

Pause the agent just after processing a message. Defined in class class casa.TransientAgent.

F.32 AGENT.PING

AGENT.PING is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR AGENT.PING>. Its synonyms are PING.

Lambda list

(URL &KEY (TIMEOUT 2000))

Function documentation

Pings another agent and returns it’s URL or NIL if the ping failed. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

URL java.lang.String The URL of the agent to ping.
:TIMEOUT def=org.-

armedbear.lisp.-
Fixnum@7d0

java.lang.Integer The time in milliseconds to wait.

July 21, 2014 Knowledge Science Group, University of Calgary 67 of 108

CASA USER MANUAL F. LISP COMMANDS

F.33 AGENT.PRINTLN

AGENT.PRINTLN is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR AGENT.PRINTLN>.

Lambda list

(TAG &REST MESSAGE)

Function documentation

Log the message to the agent’s reporting mechanism. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

TAG The tag for conditional logging. ’error’ or NIL will always
print.

MESSAGE def=”&REST” Objects to be converted to type String, concatonated, and
used as the log message.

F.34 AGENT.PUT-POLICY

AGENT.PUT-POLICY is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR AGENT.PUT-POLICY>.

Lambda list

(POLICY &KEY ALWAYS-APPLY LAST-RESORT)

Function documentation

Insert a policy into the agent’s global policy repetoire. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

POLICY casa.policy.Policy The policy to be added.
:ALWAYS-APPLY java.lang.Boolean Apply this policy to every conversation, if set.
:LAST-RESORT java.lang.Boolean Apply this policy only if no other non-last-resort policies are

applicable, if set.

F.35 AGENT.REPLY

AGENT.REPLY is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR AGENT.REPLY>.

Lambda list

(TO-MESSAGE &OPTIONAL PERFORM-DESCRIPTOR &ALLOW-OTHER-KEYS)

July 21, 2014 Knowledge Science Group, University of Calgary 68 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Sends a message to another agent constructed from the argument message, with fields being replaced from the
PerformDescriptor and any other keys/value pairs given. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

TO-MESSAGE casa.MLMessage The message to which the reply is being made
PERFORM--
DESCRIPTOR

optional Normally either the result of a call to the agent’s ’consider’
method or a legal reply performative string or NIL (taken as
’agree’.

F.36 AGENT.RESET-DEF-FILE-SYSTEM-LOCATIONS

AGENT.RESET-DEF-FILE-SYSTEM-LOCATIONS is an external symbol in the COMMON-LISP-USER pack-
age. Its function binding is #<SPECIAL-OPERATOR AGENT.RESET-DEF-FILE-SYSTEM-LOCATIONS>.

Lambda list

NIL

Function documentation

resets the default file sysetm locations from system properties casa.home and user.home. Defined in class class
casa.TransientAgent.

F.37 AGENT.RESUME

AGENT.RESUME is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR AGENT.RESUME>.

Lambda list

NIL

Function documentation

Resume the agent from a pause state. Defined in class class casa.TransientAgent.

F.38 AGENT.SEND

AGENT.SEND is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR AGENT.SEND>.

Lambda list

(MESSAGE &KEY PROXY)

July 21, 2014 Knowledge Science Group, University of Calgary 69 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Sends a message to another agent. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

MESSAGE casa.MLMessage The message to send
:PROXY Send the message through the indicated proxy (optional)

F.39 AGENT.SEND-QUERY-AND-WAIT

AGENT.SEND-QUERY-AND-WAIT is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR AGENT.SEND-QUERY-AND-WAIT>. Its synonyms are QUERYW.

Lambda list

(MESSAGE &KEY (TIMEOUT 2000))

Function documentation

Sends a request-type message and waits for the response. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

MESSAGE casa.MLMessage The message to send.
:TIMEOUT def=org.-

armedbear.lisp.-
Fixnum@7d0

java.lang.Integer The time in milliseconds to wait.

F.40 AGENT.SEND-REQUEST-AND-WAIT

AGENT.SEND-REQUEST-AND-WAIT is an external symbol in the COMMON-LISP-USER package. Its
function binding is #<SPECIAL-OPERATOR AGENT.SEND-REQUEST-AND-WAIT>. Its synonyms are
REQUESTW.

Lambda list

(MESSAGE &KEY (TIMEOUT 2000))

Function documentation

Sends a request-type message and waits for the response. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

MESSAGE casa.MLMessage The message to send.
:TIMEOUT def=org.-

armedbear.lisp.-
Fixnum@7d0

java.lang.Integer The time in milliseconds to wait.

F.41 AGENT.SHOW-COMMITMENTS

AGENT.SHOW-COMMITMENTS is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR AGENT.SHOW-COMMITMENTS>. Its synonyms are SCOM.

July 21, 2014 Knowledge Science Group, University of Calgary 70 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

(&KEY CURRENT VIOLATED)

Function documentation

Show the social commitments. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

:CURRENT Show only the commitments that are not filfilled, violated,
etc.

:VIOLATED Show only the commitments that are violated.

F.42 AGENT.SHOW-CONVERSATIONS

AGENT.SHOW-CONVERSATIONS is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR AGENT.SHOW-CONVERSATIONS>. Its synonyms are SCONV.

Lambda list

(&OPTIONAL NAME &KEY CURRENT (VERBOSE 1))

Function documentation

Show the conversations – supported, current, all, or a specific one. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

NAME optional java.lang.String If present shows the named template, otherwise all are
shown.

:CURRENT Show the current conversations for the current agent; ignores
the NAME parameter.

:VERBOSE def=org.-
armedbear.lisp.-
Fixnum@1

java.lang.Integer 0=only names; 1=state with no policies; 2=all

F.43 AGENT.SHOW-EVENT-QUEUE

AGENT.SHOW-EVENT-QUEUE is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR AGENT.SHOW-EVENT-QUEUE>. Its synonyms are SEQ.

Lambda list

NIL

Function documentation

Show the events on the event queue, returning a count. Defined in class class casa.AbstractProcess.

F.44 AGENT.SHOW-EVENTQUEUE

AGENT.SHOW-EVENTQUEUE is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR AGENT.SHOW-EVENTQUEUE>.

July 21, 2014 Knowledge Science Group, University of Calgary 71 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

NIL

Function documentation

List the current event queue. Defined in class class casa.TransientAgent.

F.45 AGENT.STEP

AGENT.STEP is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR AGENT.STEP>.

Lambda list

NIL

Function documentation

Resume the agent from a pause state until just after processing the next message. Defined in class class
casa.TransientAgent.

F.46 AGENT.STOP-EVENT-OBSERVER-EVENT

AGENT.STOP-EVENT-OBSERVER-EVENT is an external symbol in the COMMON-LISP-USER package.
Its function binding is #<SPECIAL-OPERATOR AGENT.STOP-EVENT-OBSERVER-EVENT>.

Lambda list

(CONVERSATION-ID)

Function documentation

Stop the event with the matching owner conversation ID. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

CONVERSATION-ID java.lang.String The event’s owner conversation ID.

F.47 AGENT.TELL

AGENT.TELL is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR AGENT.TELL>.

Lambda list

(AGENT COMMAND)

July 21, 2014 Knowledge Science Group, University of Calgary 72 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Sends a REQUEST/EXECUTE message with the specified command. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

AGENT java.lang.String The URL of the agent to execute the command.
COMMAND java.lang.String The command to execute.

F.48 AGENT.TRANSFORM

AGENT.TRANSFORM is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR AGENT.TRANSFORM>.

Lambda list

(DESCRIBABLE)

Function documentation

Returns the transformed object, or the argument argument if no transformation is applicable. Defined in class
class casa.TransientAgent.
Parameter Default Type Notes

DESCRIBABLE casa.interfaces.-
Describable

The object to transform.

F.49 AGENT.TRANSFORM-STRING

AGENT.TRANSFORM-STRING is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR AGENT.TRANSFORM-STRING>.

Lambda list

(STRING)

Function documentation

Returns the transformed string, or the argument string if no transformation is applicable. Defined in class class
casa.TransientAgent.
Parameter Default Type Notes

STRING java.lang.String The string to transform in id—id—... form.

F.50 CALL-GC

CALL-GC is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR CALL-GC>.

Lambda list

NIL

July 21, 2014 Knowledge Science Group, University of Calgary 73 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Requests the Garbage Collector to clean up. Defined in class class casa.TransientAgent.

F.51 COMPARETO

COMPARETO is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR COMPARETO>.

Lambda list

(p1 p2)

Function documentation

Calls the java compareto() operator on the 1st parameter with the second parameter as an argument. Defined
in class class casa.TransientAgent.
Parameter Default Type Notes

P1 P1
P2 P2

F.52 CONSEQUENT-CLASS

CONSEQUENT-CLASS is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR CONSEQUENT-CLASS>.

Lambda list

(CLASS-NAME)

Function documentation

Return a new object that is a subclass of Concequent. Defined in class class casa.policy.Policy.
Parameter Default Type Notes

CLASS-NAME The fully-qualified name if a subclass of Rule.

F.53 CONSTRAINT

CONSTRAINT is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR CONSTRAINT>.

Lambda list

(&OPTIONAL TYPE-NAME &KEY INDIVIDUAL-ONLY TYPE-ONLY EXP ONTOLOGY The ontology in
which this constraint resides.)

July 21, 2014 Knowledge Science Group, University of Calgary 74 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

set a type-to-type relationship in the specified relation. Defined in class class casa.ontology.v3.ConstraintSimple.
Parameter Default Type Notes

TYPE-NAME optional java.lang.String The type to constrain to.
:INDIVIDUAL-ONLY java.lang.Boolean Constraint to being an individual only and not a type.
:TYPE-ONLY java.lang.Boolean Constrain to being a type only and not an individual.
:EXP org.armedbear.-

lisp.Cons
The expression that must evaluate to true for the valida-
tion to pass. The expression is evaluation of an environment
with variables: ?type (the type under consideration), ?0 (the
domain), ?1 (the range), etc.

:ONTOLOGY :ONTOLOGY

F.54 CONVERSATION

CONVERSATION is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR CONVERSATION>.

Lambda list

(NAME BINDINGS &KEY BIND-VAR BIND-VAR-TO BIND-STATE CLASS)

Function documentation

Declares a conversation. Defined in class class casa.conversation2.Conversation.
Parameter Default Type Notes

NAME java.lang.String The name of the conversation.
BINDINGS org.armedbear.-

lisp.Cons
A Cons list of Lisp functions describing sub-conversations or
policies.

:BIND-VAR org.armedbear.-
lisp.Cons

A Cons list of pairs of symbol/values pairs (themselves Cons
lists) that will be bound in the context of the conversation.
The expressions are evaluated at the time the conversation
is created.

:BIND-VAR-TO org.armedbear.-
lisp.Cons

A Cons list of triples of symbol/childConversation/-
childSymbol (themselves Cons lists) that will be bound in
the context of the conversation.

:BIND-STATE org.armedbear.-
lisp.Cons

A Cons list of triples of state/childConversation/childState
(themselves Cons lists) that will be bound in the context of
the conversation.

:CLASS java.lang.String The specific subclass of a Conversation.

F.55 CONVERSATION.EXECUTE-ACTION

CONVERSATION.EXECUTE-ACTION is an external symbol in the COMMON-LISP-USER package. Its
function binding is #<SPECIAL-OPERATOR CONVERSATION.EXECUTE-ACTION>.

Lambda list

(EVENT &KEY SUCCESS FAILURE)

July 21, 2014 Knowledge Science Group, University of Calgary 75 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Executes ONE of the current conversation’s actions. Defined in class class casa.conversation2.Conversation.
Parameter Default Type Notes

EVENT casa.event.Event The event in scope,
:SUCCESS java.lang.Boolean The success action.
:FAILURE java.lang.Boolean The failure action.

F.56 CONVERSATION.GET-STATE

CONVERSATION.GET-STATE is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR CONVERSATION.GET-STATE>.

Lambda list

NIL

Function documentation

Gets the state of the current conversation. Defined in class class casa.conversation2.Conversation.

F.57 CONVERSATION.SET-ACTION

CONVERSATION.SET-ACTION is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR CONVERSATION.SET-ACTION>.

Lambda list

(&KEY SUCCESS FAILURE)

Function documentation

Sets one or more actions of the current conversation. Defined in class class casa.conversation2.Conversation.
Parameter Default Type Notes

:SUCCESS java.lang.String The success action.
:FAILURE java.lang.String The failure action.

F.58 CONVERSATION.SET-STATE

CONVERSATION.SET-STATE is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR CONVERSATION.SET-STATE>.

Lambda list

(STATE)

Function documentation

Sets the state of the current conversation. Defined in class class casa.conversation2.Conversation.
Parameter Default Type Notes

STATE java.lang.String The new state.

July 21, 2014 Knowledge Science Group, University of Calgary 76 of 108

CASA USER MANUAL F. LISP COMMANDS

F.59 DECLINDIVIDUAL

DECLINDIVIDUAL is a synonym for ONT.IS-TYPE (Section F.111).

F.60 DECLMAPLET

DECLMAPLET is a synonym for ONT.ASSERT (Section F.103).

F.61 DECLONTOLOGY

DECLONTOLOGY is a synonym for ONTOLOGY (Section F.116).

F.62 DECLRELATION

DECLRELATION is a synonym for ONT.RELATION (Section F.113).

F.63 DECLTYPE

DECLTYPE is a synonym for ONT.TYPE (Section F.115).

F.64 ECHO

ECHO is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ECHO>.

Lambda list

(first &OPTIONAL (second 2 second default) third &REST rest &KEY NAMED BOOL &ALLOW-OTHER-
KEYS)

Function documentation

Merely echos the parameters for casa operators. Defined in class class casa.abcl.CasaLispOperator.
Parameter Default Type Notes

FIRST first param
SECOND optional def=org.-

armedbear.lisp.-
Fixnum@2

second optional param with default

THIRD optional third optional param
REST def=”&REST” the rest of the line, including keys
:NAMED named doc
:BOOL java.lang.Boolean bool doc

F.65 EVENT-DESCRIPTOR

EVENT-DESCRIPTOR is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR EVENT-DESCRIPTOR>.

July 21, 2014 Knowledge Science Group, University of Calgary 77 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

(EVENT-TYPE &ALLOW-OTHER-KEYS)

Function documentation

Return a new EventDescriptor that matches fields according the the keys and values. Defined in class class
casa.event.EventDescriptor$EventDescriptorLispOperator.
Parameter Default Type Notes

EVENT-TYPE java.lang.String The most specific event to match

F.66 EVENT.GET

EVENT.GET is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR EVENT.GET>.

Lambda list

NIL

Function documentation

Return the Event object. Defined in class class casa.TransientAgent.

F.67 EVENT.GET-MSG

EVENT.GET-MSG is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR EVENT.GET-MSG>.

Lambda list

(&OPTIONAL TAG &KEY UNSERIALIZE)

Function documentation

Return the value of the specified message tag, Nil if the tag is missing and throws an exception if the MSG isn’t
in scope. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

TAG optional java.lang.String The tag for which to return the value.
:UNSERIALIZE If included, an attempt to unserialize the value will be made.

F.68 EVENT.GET-MSG-OBJ

EVENT.GET-MSG-OBJ is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR EVENT.GET-MSG-OBJ>.

Lambda list

NIL

July 21, 2014 Knowledge Science Group, University of Calgary 78 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Return the value of the specified message tag, Nil if the tag is missing and throws an exception if the MSG isn’t
in scope. Defined in class class casa.TransientAgent.

F.69 EVENT.GET-OWNER-CONVERSATION-ID

EVENT.GET-OWNER-CONVERSATION-ID is an external symbol in the COMMON-LISP-USER package.
Its function binding is #<SPECIAL-OPERATOR EVENT.GET-OWNER-CONVERSATION-ID>.

Lambda list

NIL

Function documentation

Return the Event’s owner conversation ID if it has one. Defined in class class casa.TransientAgent.

F.70 FIPA-FOLLOWS

FIPA-FOLLOWS is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR FIPA-FOLLOWS>.

Lambda list

(DOMAIN &OPTIONAL RANGE &KEY ONTOLOGY)

Function documentation

Test weather items are related in the FIPA-follows relation. Defined in class class casa.ontology.owl2.OWLOntology.
Parameter Default Type Notes

DOMAIN java.lang.String
RANGE optional java.lang.String
:ONTOLOGY java.lang.String The ontology use (default is the agent current ontology)

F.71 FIPA-PRECEEDS

FIPA-PRECEEDS is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR FIPA-PRECEEDS>.

Lambda list

(DOMAIN &OPTIONAL RANGE &KEY ONTOLOGY)

July 21, 2014 Knowledge Science Group, University of Calgary 79 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Test weather items are related in the FIPA-preceeds relation. Defined in class class casa.ontology.owl2.OWLOntology.
Parameter Default Type Notes

DOMAIN java.lang.String
RANGE optional java.lang.String
:ONTOLOGY java.lang.String The ontology use (default is the agent current ontology)

F.72 FIRE-EVENT

FIRE-EVENT is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR FIRE-EVENT>.

Lambda list

NIL

Function documentation

Fire the current event. Defined in class interface casa.event.Event.

F.73 GET-HOST-NAMES

GET-HOST-NAMES is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR GET-HOST-NAMES>.

Lambda list

NIL

Function documentation

Show the host names for this computer. Defined in class class casa.AbstractProcess.

F.74 GET-INETADDRESSES

GET-INETADDRESSES is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR GET-INETADDRESSES>.

Lambda list

NIL

Function documentation

Show all the InetAddresses for this computer. Defined in class class casa.AbstractProcess.

July 21, 2014 Knowledge Science Group, University of Calgary 80 of 108

CASA USER MANUAL F. LISP COMMANDS

F.75 GET-OBJECT

GET-OBJECT is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR GET-OBJECT>.

Lambda list

(NAME)

Function documentation

(DEPRECATED) Return the value of the specified message tag, Nil if the tag is missing and throws an exception
if the MSG isn’t in scope. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

NAME java.lang.String The key the object to return.

F.76 GET-ONTOLOGY

GET-ONTOLOGY is a synonym for ONT.GET (Section F.105).

F.77 GET-RESIDENT-ONTOLOGIES

GET-RESIDENT-ONTOLOGIES is a synonym for ONT.GET-RESIDENT (Section F.106).

F.78 GET-SYSTEM

GET-SYSTEM is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR GET-SYSTEM>.

Lambda list

(&OPTIONAL (PROPERTY all))

Function documentation

Either return the string value of a system property, or display all system properties (returning NIL). Defined
in class class casa.TransientAgent.
Parameter Default Type Notes

PROPERTY optional def=”all” string name of the system property to show (or ’all’ to display
and return NIL)

F.79 GET-THREAD

GET-THREAD is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR GET-THREAD>.

Lambda list

NIL

July 21, 2014 Knowledge Science Group, University of Calgary 81 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Returns the current tread name as a string. Defined in class class casa.TransientAgent.

F.80 GETONTOLOGY

GETONTOLOGY is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR GETONTOLOGY>.

Lambda list

NIL

Function documentation

Return the agent’s current default ontology. Defined in class class java.lang.reflect.Method.

F.81 GETONTOLOGYENGINE

GETONTOLOGYENGINE is an external symbol in the COMMON-LISP-USER package. Its function binding
is #<SPECIAL-OPERATOR GETONTOLOGYENGINE>.

Lambda list

NIL

Function documentation

Function’s help is undefined. Defined in class class java.lang.reflect.Method.

F.82 HASCONVERSATION

HASCONVERSATION is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR HASCONVERSATION>.

Lambda list

(convID)

Function documentation

Returns T iff the agent has a conversation with a specific conversationID; returns NIL otherwise. Defined in
class class java.lang.reflect.Method.
Parameter Default Type Notes

CONVID java.lang.String The conversation ID to look up.

July 21, 2014 Knowledge Science Group, University of Calgary 82 of 108

CASA USER MANUAL F. LISP COMMANDS

F.83 HELP

HELP is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR HELP>. Its synonyms are ?.

Lambda list

(&OPTIONAL APROPOSE &KEY (LATEX NIL))

Function documentation

Displays list of casa functions. Defined in class class casa.abcl.CasaLispOperator.
Parameter Default Type Notes

APROPOSE optional java.lang.String A string to match to select a subset of casa functions.
:LATEX def=NIL java.lang.Boolean Print the output in LaTex format (not a full document, just

a set of subsection’s).

F.84 instance-of

instance-of is a synonym for PRIMITIVEONTOLOGY.INSTANCE-OF (Section F.124).

F.85 isa

isa is a synonym for PRIMITIVEONTOLOGY.ISA (Section F.125).

F.86 isa-ancestor

isa-ancestor is a synonym for PRIMITIVEONTOLOGY.ISA-ANCESTOR (Section F.126).

F.87 isa-child

isa-child is a synonym for PRIMITIVEONTOLOGY.ISA-CHILD (Section F.127).

F.88 isa-descendant

isa-descendant is a synonym for PRIMITIVEONTOLOGY.ISA-DESCENDANT (Section F.128).

F.89 isa-parent

isa-parent is a synonym for PRIMITIVEONTOLOGY.ISA-PARENT (Section F.129).

F.90 isequal

isequal is a synonym for PRIMITIVEONTOLOGY.ISEQUAL (Section F.130).

F.91 ISPARENT

ISPARENT is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ISPARENT>.

July 21, 2014 Knowledge Science Group, University of Calgary 83 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

(DOMAIN &OPTIONAL RANGE &KEY ONTOLOGY)

Function documentation

Test weather items are related in the isparent relation. Defined in class class casa.ontology.owl2.OWLOntology.
Parameter Default Type Notes

DOMAIN java.lang.String
RANGE optional java.lang.String
:ONTOLOGY java.lang.String The ontology use (default is the agent current ontology)

F.92 KB.ARG-DESC

KB.ARG-DESC is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR KB.ARG-DESC>.

Lambda list

(VARIABLE &KEY SUBSUMPTION)

Function documentation

Description of arguments. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

VARIABLE java.lang.String PATTERN of the Argument
:SUBSUMPTION :SUBSUMPTION

F.93 KB.ASSERT

KB.ASSERT is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR KB.ASSERT>.

Lambda list

(FORMULA)

Function documentation

Asserts the formula into the KB. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

FORMULA java.lang.String The formula.

F.94 KB.DEFINE-ONT-FILTER

KB.DEFINE-ONT-FILTER is an external symbol in the COMMON-LISP-USER package. Its function binding
is #<SPECIAL-OPERATOR KB.DEFINE-ONT-FILTER>.

July 21, 2014 Knowledge Science Group, University of Calgary 84 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

(PATTERN &REST ARGUMENTS)

Function documentation

Defining the ontology filter. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

PATTERN java.lang.String PATTERN of the FILTER
ARGUMENTS def=”&REST” Set to non-NIL to have PATTERN interpreted as a regular

expression occuring in the expression displayed.

F.95 KB.GET-VALUE

KB.GET-VALUE is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR KB.GET-VALUE>.

Lambda list

(ATTRIBUTE)

Function documentation

Return the (unique) value of an attribute in an (attribute value) pair. Defined in class class java.lang.reflect.Method.
Parameter Default Type Notes

ATTRIBUTE java.lang.String An attribute name in an (attribute value) pair.

F.96 KB.QUERY-IF

KB.QUERY-IF is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR KB.QUERY-IF>.

Lambda list

(FORMULA &KEY REPLY-EXP BOOLEAN TO)

Function documentation

Queries the formula from the KB returning a Nil (if the formula doesn’t exist), T (if it does), or a list of string
(if it does and it contains meta variables). Defined in class class casa.TransientAgent.
Parameter Default Type Notes

FORMULA java.lang.String The formula.
:REPLY-EXP Return a string containing an expression appropriate for a

reply instead of the default.
:BOOLEAN Return either T or NIL instead of the default.
:TO java.lang.String Send the request to another agent and return a boolean.

July 21, 2014 Knowledge Science Group, University of Calgary 85 of 108

CASA USER MANUAL F. LISP COMMANDS

F.97 KB.QUERY-REF

KB.QUERY-REF is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR KB.QUERY-REF>.

Lambda list

(FORMULA)

Function documentation

Return the answer to to JSL-like query-ref. Defined in class class java.lang.reflect.Method.
Parameter Default Type Notes

FORMULA java.lang.String A JSL-like identifying expression: iota, any, all, some.

F.98 KB.SHOW

KB.SHOW is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR KB.SHOW>.

Lambda list

(&OPTIONAL PATTERN &KEY REGEX STRICT FACTS QUERIES ASSERTS)

Function documentation

Dispalys the formulas from the KB. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

PATTERN optional java.lang.String If specified, only expressions containing PATTERN will be
displayed.

:REGEX Set to non-NIL to have PATTERN interpreted as a regular
expression occuring in the expression displayed.

:STRICT Set to non-NIL to have PATTERN interpreted as a regu-
lar expression that must match the entire expression to be
displayed.

:FACTS Set to non-NIL to return only a list of facts in the KB.
:QUERIES Set to non-NIL to return only a list of query filters on the

KB.
:ASSERTS Set to non-NIL to return only a list of assert filters on the

KB.

F.99 LOAD-FILE-RESOURCE

LOAD-FILE-RESOURCE is a synonym for AGENT.LOAD-FILE-RESOURCE (Section F.25).

F.100 LOAD-JAR

LOAD-JAR is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR LOAD-JAR>.

July 21, 2014 Knowledge Science Group, University of Calgary 86 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

(JARNAME)

Function documentation

Loads a jar into the classpath. Defined in class class casa.util.JarLoader.
Parameter Default Type Notes

JARNAME java.lang.String The fully-qualified pathname of jar file (including the .jar
extension).

F.101 MSGEVENT-DESCRIPTOR

MSGEVENT-DESCRIPTOR is an external symbol in the COMMON-LISP-USER package. Its function binding
is #<SPECIAL-OPERATOR MSGEVENT-DESCRIPTOR>.

Lambda list

(&OPTIONAL EVENT-TYPE &ALLOW-OTHER-KEYS)

Function documentation

Return a new MessageEventDescriptor that matches fields according the the keys and values. Defined in class
class casa.event.EventDescriptor$EventDescriptorLispOperator.
Parameter Default Type Notes

EVENT-TYPE optional java.lang.String The specific subtype of EVENT MESSAGE EVENT of to
be matched

F.102 NEW-URL

NEW-URL is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR NEW-URL>.

Lambda list

(STRING)

Function documentation

Attempt to construct a URL from a string representation. Defined in class class casa.agentCom.URLDescriptor.
Parameter Default Type Notes

STRING The URL of the cooperation domain to join.

F.103 ONT.ASSERT

ONT.ASSERT is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ONT.ASSERT>. Its synonyms are DECLMAPLET.

July 21, 2014 Knowledge Science Group, University of Calgary 87 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

(RELATION-NAME DOMAIN RANGE &KEY ONTOLOGY VERBOSE)

Function documentation

set a type-to-type relationship in the specified relation. Defined in class interface casa.ontology.Ontology.
Parameter Default Type Notes

RELATION-NAME java.lang.String The name of the relation.
DOMAIN java.lang.String An element in the domain of this relation.
RANGE A element or list of elements to be set as the range in this

relation.
:ONTOLOGY java.lang.String The ontology to put the new type in (default is the agent

current ontology)
:VERBOSE echo the command if verbose/=NIL

F.104 ONT.DESCRIBE

ONT.DESCRIBE is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ONT.DESCRIBE>.

Lambda list

(ITEM &KEY VERBOSE SYNTAX INDIVIDUAL TYPE RELATION)

Function documentation

Prints out a description of the item. Defined in class interface casa.ontology.Ontology.
Parameter Default Type Notes

ITEM java.lang.String The item to describe.
:VERBOSE echo the command if verbose/=NIL
:SYNTAX java.lang.String manchester, functional, tutorial, XML, DLHTML, DL,

KRSS2, KRSS, LatexAxiomsList, latex, OBO, prefix ...
:INDIVIDUAL print out a lisp description of an individual in the ontology,

returning the individual object.
:TYPE print out a lisp description of a type in the ontology, return-

ing the type object.
:RELATION print out a lisp description of a relation in the ontology, re-

turning the relation object.

F.105 ONT.GET

ONT.GET is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ONT.GET>. Its synonyms are GET-ONTOLOGY.

Lambda list

(&OPTIONAL ONTOLOGY &KEY VERBOSE INDIVIDUAL TYPE RELATION (IMPORTS NIL))

July 21, 2014 Knowledge Science Group, University of Calgary 88 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Retrieves ontology either from the shared memory or from a file of the same name ([name].ont.lisp). If none
of :relation, :type, or :individual is specified the ontology is printed and returned. Defined in class interface
casa.ontology.Ontology.
Parameter Default Type Notes

ONTOLOGY optional java.lang.String The name of the ontology.
:VERBOSE echo the command if verbose/=NIL
:INDIVIDUAL print out a lisp description of an individual in the ontology,

returning the individual object.
:TYPE print out a lisp description of a type in the ontology, return-

ing the type object.
:RELATION print out a lisp description of a relation in the ontology, re-

turning the relation object.
:IMPORTS def=NIL java.lang.Boolean print out the imported ontologies (ignored if INDIVIDUAL,

TYPE, or RELATION is present).

F.106 ONT.GET-RESIDENT

ONT.GET-RESIDENT is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR ONT.GET-RESIDENT>. Its synonyms are GET-RESIDENT-ONTOLOGIES.

Lambda list

(&KEY VERBOSE)

Function documentation

Retrieves a list of the names of the ontologies in shared memory. Defined in class interface casa.ontology.Ontology.
Parameter Default Type Notes

:VERBOSE echo the command if verbose/=NIL

F.107 ONT.IMPORT

ONT.IMPORT is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ONT.IMPORT>. Its synonyms are DECLTYPE.

Lambda list

(NAME &KEY ONTOLOGY VERBOSE)

Function documentation

Import another ontology (ie: make the other ontology a superontology of the agent’s ontology). Defined in class
interface casa.ontology.Ontology.
Parameter Default Type Notes

NAME java.lang.String The name super (imported) ontology.
:ONTOLOGY java.lang.String The ontology to import the new onotlogy into (default is the

agent’s ontology)
:VERBOSE echo the command if verbose/=NIL

July 21, 2014 Knowledge Science Group, University of Calgary 89 of 108

CASA USER MANUAL F. LISP COMMANDS

F.108 ONT.INDIVIDUAL

ONT.INDIVIDUAL is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR ONT.INDIVIDUAL>. Its synonyms are DECLINDIVIDUAL.

Lambda list

(NAME &OPTIONAL TYPE The type of the invidiual. &KEY ONTOLOGY VERBOSE)

Function documentation

Declare an individual in the A-box. Defined in class interface casa.ontology.Ontology.
Parameter Default Type Notes

NAME java.lang.String The name of the new individual.
TYPE optional java.lang.String

F.109 ONT.IS-INDIVIDUAL

ONT.IS-INDIVIDUAL is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR ONT.IS-INDIVIDUAL>. Its synonyms are DECLINDIVIDUAL.

Lambda list

(NAME &KEY ONTOLOGY)

Function documentation

Return true iff the parameter is an individual in the ontology. Defined in class interface casa.ontology.Ontology.
Parameter Default Type Notes

NAME java.lang.String The name of the item.
:ONTOLOGY java.lang.String The ontology to look in (default is the agent current ontol-

ogy)

F.110 ONT.IS-OBJECT

ONT.IS-OBJECT is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ONT.IS-OBJECT>. Its synonyms are DECLINDIVIDUAL.

Lambda list

(NAME &KEY ONTOLOGY)

Function documentation

Return true iff the parameter is a type or an individual in the ontology. Defined in class interface casa.ontology.Ontology.
Parameter Default Type Notes

NAME java.lang.String The name of the item.
:ONTOLOGY java.lang.String The ontology to look in (default is the agent current ontol-

ogy)

July 21, 2014 Knowledge Science Group, University of Calgary 90 of 108

CASA USER MANUAL F. LISP COMMANDS

F.111 ONT.IS-TYPE

ONT.IS-TYPE is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ONT.IS-TYPE>. Its synonyms are DECLINDIVIDUAL.

Lambda list

(NAME &KEY ONTOLOGY)

Function documentation

Return true iff the parameter is a type (not an individual) in the ontology. Defined in class interface casa.ontology.Ontology.
Parameter Default Type Notes

NAME java.lang.String The name of the item.
:ONTOLOGY java.lang.String The ontology to look in (default is the agent current ontol-

ogy)

F.112 ONT.RELATED-TO

ONT.RELATED-TO is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR ONT.RELATED-TO>.

Lambda list

(RELATION DOMAIN &OPTIONAL RANGE &KEY ONTOLOGY VERBOSE)

Function documentation

If RANGE is specified, return T iff the DOMAIN is related to the RANGE by the specified RELATION, other-
wise return the set of elements in range of DOMAIN by RELATION. Defined in class interface casa.ontology.Ontology.
Parameter Default Type Notes

RELATION java.lang.String The name of the relation.
DOMAIN java.lang.String An element in the domain of this relation.
RANGE optional java.lang.String A element in the range in this relation.
:ONTOLOGY java.lang.String The ontology in which to check (default is the agent current

ontology)
:VERBOSE echo the command if verbose/=NIL

F.113 ONT.RELATION

ONT.RELATION is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ONT.RELATION>. Its synonyms are DECLRELATION.

Lambda list

(RELATION-NAME &KEY (DOMAIN-CONSTRAINT NIL) (RANGE-CONSTRAINT NIL) BASE INVERSE
REFLEXIVE SYMMETRIC ASYMMETRIC TRANSITIVE USES ASSIGNABLE ONTOLOGY VERBOSE)

July 21, 2014 Knowledge Science Group, University of Calgary 91 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Define a relation in the agent’s casa ontology. Defined in class interface casa.ontology.Ontology.
Parameter Default Type Notes

RELATION-NAME The name of the relation.
:DOMAIN--
CONSTRAINT

def=NIL casa.ontology.-
Constraint

The constraint for the domain elements of this relation.

:RANGE-CONSTRAINT def=NIL casa.ontology.-
Constraint

The constraint for the range elements of this relation.

:BASE The relation on which this is based.
:INVERSE This relation is to be an inverse relation (x->y => y->x) of

the base relation.
:REFLEXIVE This relation is a reflexive (x->x) version of the base

relation.
:SYMMETRIC This relation is a symmetric (x->y => y->x) version of the

base relation.
:ASYMMETRIC This relation is an asymmetric (x->y => (y->x)) version

of the base relation.
:TRANSITIVE This relation is a transitive (x->y & y->z => x->y) version

of the base relation.
:USES java.lang.String This relation uses relation [arg] as an equivalence relation.
:ASSIGNABLE This relation is assignable (that is one can use it as first

argument in a (declMaplet ...) operator
:ONTOLOGY java.lang.String The ontology to put the new type in (default is the agent

current ontology)
:VERBOSE echo the command if verbose/=NIL

F.114 ONT.SET-DEFAULT

ONT.SET-DEFAULT is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR ONT.SET-DEFAULT>. Its synonyms are SET-DEFAULT-ONTOLOGY.

Lambda list

(NAME)

Function documentation

Sets the agent’s default ontology either from the shared memory or from a file of the same name ([name].ont.lisp).
Defined in class interface casa.ontology.Ontology.
Parameter Default Type Notes

NAME java.lang.String The name of the ontology.

F.115 ONT.TYPE

ONT.TYPE is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ONT.TYPE>. Its synonyms are DECLTYPE.

Lambda list

(NAME &OPTIONAL TYPE The type of the invidiual. &KEY ONTOLOGY VERBOSE)

July 21, 2014 Knowledge Science Group, University of Calgary 92 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Declare a type in the T-box. Defined in class interface casa.ontology.Ontology.
Parameter Default Type Notes

NAME java.lang.String The name of the new type.
TYPE optional java.lang.String

F.116 ONTOLOGY

ONTOLOGY is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR ONTOLOGY>. Its synonyms are DECLONTOLOGY, WITH-ONTOLOGY.

Lambda list

(NAME SUPER-ONTOLOGIES RELS-AND-TYPES &KEY VERBOSE)

Function documentation

Declare a new Ontology or extends an existing Ontology. Defined in class interface casa.ontology.Ontology.
Parameter Default Type Notes

NAME java.lang.String The name of the ontology.
SUPER-ONTOLOGIES A list of existing ontology names to append to the super--

ontologies of this ontology.
RELS-AND-TYPES A list of decl* type declarations.
:VERBOSE echo the command if verbose/=NIL

F.117 PERFORMDESCRIPTOR

PERFORMDESCRIPTOR is an external symbol in the COMMON-LISP-USER package. Its function binding
is #<SPECIAL-OPERATOR PERFORMDESCRIPTOR>.

Lambda list

(&OPTIONAL (STATUSVALUE 0) &ALLOW-OTHER-KEYS)

Function documentation

Creates a new PerformDescriptor with the status value if the parameter (def=0) and the fields specified in the
keys on the parameter PD’s feilds. Defined in class class casa.PerformDescriptor.
Parameter Default Type Notes

STATUSVALUE optional def=org.-
armedbear.lisp.-
Fixnum@0

java.lang.Integer The integer status value of the new PerformDescriptor.

F.118 PERFORMDESCRIPTOR.GET-STATUS

PERFORMDESCRIPTOR.GET-STATUS is an external symbol in the COMMON-LISP-USER package. Its
function binding is #<SPECIAL-OPERATOR PERFORMDESCRIPTOR.GET-STATUS>.

July 21, 2014 Knowledge Science Group, University of Calgary 93 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

(PD)

Function documentation

Retrieves this PerformDescriptor’s Status object. Defined in class class casa.PerformDescriptor.
Parameter Default Type Notes

PD casa.-
PerformDescriptor

The PerformDescriptor from which the Status object will be
retrieved.

F.119 PERFORMDESCRIPTOR.GET-STATUS-VALUE

PERFORMDESCRIPTOR.GET-STATUS-VALUE is an external symbol in the COMMON-LISP-USER pack-
age. Its function binding is #<SPECIAL-OPERATOR PERFORMDESCRIPTOR.GET-STATUS-VALUE>.

Lambda list

(PD)

Function documentation

Retrieves this PerformDescriptor’s Status’s value. Defined in class class casa.PerformDescriptor.
Parameter Default Type Notes

PD casa.-
PerformDescriptor

The PerformDescriptor from which the Status’s value will be
retrieved.

F.120 PERFORMDESCRIPTOR.GET-VALUE

PERFORMDESCRIPTOR.GET-VALUE is an external symbol in the COMMON-LISP-USER package. Its
function binding is #<SPECIAL-OPERATOR PERFORMDESCRIPTOR.GET-VALUE>.

Lambda list

(PD KEY)

Function documentation

Retrieves this PerformDescriptor’s value for KEY or nil if KEY is not defined. Defined in class class casa.PerformDescriptor.
Parameter Default Type Notes

PD casa.-
PerformDescriptor

The PerformDescriptor from which the value will be
retrieved.

KEY java.lang.String The key.

F.121 PERFORMDESCRIPTOR.OVERLAY

PERFORMDESCRIPTOR.OVERLAY is an external symbol in the COMMON-LISP-USER package. Its func-
tion binding is #<SPECIAL-OPERATOR PERFORMDESCRIPTOR.OVERLAY>.

July 21, 2014 Knowledge Science Group, University of Calgary 94 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

(PD &ALLOW-OTHER-KEYS)

Function documentation

Overlays the fields specified in the keys on the parameter PD’s fields. Defined in class class casa.PerformDescriptor.
Parameter Default Type Notes

PD casa.-
PerformDescriptor

The PerformDescriptor whose fields are to be overlayed.

F.122 PING

PING is a synonym for AGENT.PING (Section F.32).

F.123 POLICY

POLICY is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR POLICY>.

Lambda list

(EVENT-DESCRIPTOR ACTIONS &OPTIONAL DOC &KEY PRECONDITION POSTCONDITION NAME
GHOST)

Function documentation

Return a new Policy object. Defined in class class casa.policy.Policy.
Parameter Default Type Notes

EVENT-DESCRIPTOR The antecedent - a description of the event; either an
EventDescriptor or a Cons that will evaluate to an
EventDescriptor.

ACTIONS org.armedbear.-
lisp.Cons

The result - a Cons list of actions to take if the event
happens.

DOC optional java.lang.String The documentation string for the policy.
:PRECONDITION A (backquoted) boolean expression acting as a guard on this

policy.
:POSTCONDITION A (backquoted) boolean expression for the post condition of

this policy (currently not used).
:NAME java.lang.String The name to be used as the short name of this policy.
:GHOST java.lang.Boolean Sets this policy to be a ghost (not counted as a ’real’ policy

application).

F.124 PRIMITIVEONTOLOGY.INSTANCE-OF

PRIMITIVEONTOLOGY.INSTANCE-OF is an external symbol in the COMMON-LISP-USER package. Its
function binding is #<SPECIAL-OPERATOR PRIMITIVEONTOLOGY.INSTANCE-OF>. Its synonyms are
instance-of, primitiveOntology.instance-of.

July 21, 2014 Knowledge Science Group, University of Calgary 95 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

(DOMAIN &OPTIONAL RANGE &KEY ONTOLOGY)

Function documentation

Test weather items are related in the instance-of relation. Defined in class class casa.ontology.v3.CASAOntology.
Parameter Default Type Notes

DOMAIN java.lang.String
RANGE optional java.lang.String
:ONTOLOGY java.lang.String The ontology use (default is the agent current ontology)

F.125 PRIMITIVEONTOLOGY.ISA

PRIMITIVEONTOLOGY.ISA is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR PRIMITIVEONTOLOGY.ISA>. Its synonyms are isa, primitiveOn-
tology.isa.

Lambda list

(DOMAIN &OPTIONAL RANGE &KEY ONTOLOGY)

Function documentation

Test weather items are related in the isa relation. Defined in class class casa.ontology.v3.CASAOntology.
Parameter Default Type Notes

DOMAIN java.lang.String
RANGE optional java.lang.String
:ONTOLOGY java.lang.String The ontology use (default is the agent current ontology)

F.126 PRIMITIVEONTOLOGY.ISA-ANCESTOR

PRIMITIVEONTOLOGY.ISA-ANCESTOR is an external symbol in the COMMON-LISP-USER package. Its
function binding is #<SPECIAL-OPERATOR PRIMITIVEONTOLOGY.ISA-ANCESTOR>. Its synonyms
are isa-ancestor, primitiveOntology.isa-ancestor.

Lambda list

(DOMAIN &OPTIONAL RANGE &KEY ONTOLOGY)

Function documentation

Test weather items are related in the isa-ancestor relation. Defined in class class casa.ontology.v3.CASAOntology.
Parameter Default Type Notes

DOMAIN java.lang.String
RANGE optional java.lang.String
:ONTOLOGY java.lang.String The ontology use (default is the agent current ontology)

July 21, 2014 Knowledge Science Group, University of Calgary 96 of 108

CASA USER MANUAL F. LISP COMMANDS

F.127 PRIMITIVEONTOLOGY.ISA-CHILD

PRIMITIVEONTOLOGY.ISA-CHILD is an external symbol in the COMMON-LISP-USER package. Its func-
tion binding is #<SPECIAL-OPERATOR PRIMITIVEONTOLOGY.ISA-CHILD>. Its synonyms are isa-
child, primitiveOntology.isa-child.

Lambda list

(DOMAIN &OPTIONAL RANGE &KEY ONTOLOGY)

Function documentation

Test weather items are related in the isa-child relation. Defined in class class casa.ontology.v3.CASAOntology.
Parameter Default Type Notes

DOMAIN java.lang.String
RANGE optional java.lang.String
:ONTOLOGY java.lang.String The ontology use (default is the agent current ontology)

F.128 PRIMITIVEONTOLOGY.ISA-DESCENDANT

PRIMITIVEONTOLOGY.ISA-DESCENDANT is an external symbol in the COMMON-LISP-USER package.
Its function binding is #<SPECIAL-OPERATOR PRIMITIVEONTOLOGY.ISA-DESCENDANT>. Its syn-
onyms are isa-descendant, primitiveOntology.isa-descendant.

Lambda list

(DOMAIN &OPTIONAL RANGE &KEY ONTOLOGY)

Function documentation

Test weather items are related in the isa-descendant relation. Defined in class class casa.ontology.v3.CASAOntology.
Parameter Default Type Notes

DOMAIN java.lang.String
RANGE optional java.lang.String
:ONTOLOGY java.lang.String The ontology use (default is the agent current ontology)

F.129 PRIMITIVEONTOLOGY.ISA-PARENT

PRIMITIVEONTOLOGY.ISA-PARENT is an external symbol in the COMMON-LISP-USER package. Its
function binding is #<SPECIAL-OPERATOR PRIMITIVEONTOLOGY.ISA-PARENT>. Its synonyms are
isa-parent, primitiveOntology.isa-parent.

Lambda list

(DOMAIN &OPTIONAL RANGE &KEY ONTOLOGY)

July 21, 2014 Knowledge Science Group, University of Calgary 97 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Test weather items are related in the isa-parent relation. Defined in class class casa.ontology.v3.CASAOntology.
Parameter Default Type Notes

DOMAIN java.lang.String
RANGE optional java.lang.String
:ONTOLOGY java.lang.String The ontology use (default is the agent current ontology)

F.130 PRIMITIVEONTOLOGY.ISEQUAL

PRIMITIVEONTOLOGY.ISEQUAL is an external symbol in the COMMON-LISP-USER package. Its func-
tion binding is #<SPECIAL-OPERATOR PRIMITIVEONTOLOGY.ISEQUAL>. Its synonyms are isequal,
primitiveOntology.isequal.

Lambda list

(DOMAIN &OPTIONAL RANGE &KEY ONTOLOGY)

Function documentation

Test weather items are related in the isequal relation. Defined in class class casa.ontology.v3.CASAOntology.
Parameter Default Type Notes

DOMAIN java.lang.String
RANGE optional java.lang.String
:ONTOLOGY java.lang.String The ontology use (default is the agent current ontology)

F.131 PRIMITIVEONTOLOGY.PROPER-INSTANCE-OF

PRIMITIVEONTOLOGY.PROPER-INSTANCE-OF is an external symbol in the COMMON-LISP-USER pack-
age. Its function binding is #<SPECIAL-OPERATOR PRIMITIVEONTOLOGY.PROPER-INSTANCE-OF>.
Its synonyms are proper-instance-of, primitiveOntology.proper-instance-of.

Lambda list

(DOMAIN &OPTIONAL RANGE &KEY ONTOLOGY)

Function documentation

Test weather items are related in the proper-instance-of relation. Defined in class class casa.ontology.v3.CASAOntology.
Parameter Default Type Notes

DOMAIN java.lang.String
RANGE optional java.lang.String
:ONTOLOGY java.lang.String The ontology use (default is the agent current ontology)

F.132 proper-instance-of

proper-instance-of is a synonym for PRIMITIVEONTOLOGY.PROPER-INSTANCE-OF (Section F.131).

July 21, 2014 Knowledge Science Group, University of Calgary 98 of 108

CASA USER MANUAL F. LISP COMMANDS

F.133 QUERY-REF

QUERY-REF is a synonym for QUERYREF (Section F.134).

F.134 QUERYREF

QUERYREF is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR QUERYREF>. Its synonyms are QUERY-REF.

Lambda list

(FORMULA &KEY REPLY-EXP TO REPLY-LIST)

Function documentation

Queries the formula for the reference from the KB returning a ListOfTerm structure. Defined in class class
casa.TransientAgent.
Parameter Default Type Notes

FORMULA java.lang.String The formula.
:REPLY-EXP Return an expression appropriate for a reply instead of a

ListOfTerm structure
:TO java.lang.String Send the request to another agent and return a

Collection<Term>.
:REPLY-LIST Return a list of the individual results as Strings.

F.135 QUERYW

QUERYW is a synonym for AGENT.SEND-QUERY-AND-WAIT (Section F.39).

F.136 REQUESTW

REQUESTW is a synonym for AGENT.SEND-REQUEST-AND-WAIT (Section F.40).

F.137 SC.ADD

SC.ADD is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR SC.ADD>.

Lambda list

(&KEY DEBTOR CREDITOR PERFORMATIVE ACT ACTION-CLASS ACTION DEPENDS-ON SHARED
PERSISTENT GETEVENTS)

Function documentation

Return a new ADD operator. Defined in class class casa.policy.Policy.

July 21, 2014 Knowledge Science Group, University of Calgary 99 of 108

CASA USER MANUAL F. LISP COMMANDS

Parameter Default Type Notes

:DEBTOR casa.agentCom.-
URLDescriptor

The debtor.

:CREDITOR casa.agentCom.-
URLDescriptor

The creditor.

:PERFORMATIVE The performative.
:ACT casa.Act The act.
:ACTION-CLASS java.lang.String The action class, which needs to be a subclass of Action.
:ACTION org.armedbear.-

lisp.Cons
The action data, which needs to be a cons list.

:DEPENDS-ON casa.-
socialcommitments.-
SocialCommitmentDescriptor

The social commitment that this one depends on.

:SHARED The commitment is a shared commitment.
:PERSISTENT The commitment is persistent and can only be removed with

a CANCEL.
:GETEVENTS We should retrieve the events from the agent.

F.138 SC.CANCEL

SC.CANCEL is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR SC.CANCEL>.

Lambda list

(&KEY DEBTOR CREDITOR PERFORMATIVE ACT)

Function documentation

Return a new CANCEL operator. Defined in class class casa.policy.Policy.
Parameter Default Type Notes

:DEBTOR casa.agentCom.-
URLDescriptor

The debtor.

:CREDITOR casa.agentCom.-
URLDescriptor

The creditor.

:PERFORMATIVE The performative.
:ACT casa.Act The act.

F.139 SC.FULFIL

SC.FULFIL is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR SC.FULFIL>.

Lambda list

(&KEY DEBTOR CREDITOR PERFORMATIVE ACT)

Function documentation

Return a new FULFIL operator. Defined in class class casa.policy.Policy.

July 21, 2014 Knowledge Science Group, University of Calgary 100 of 108

CASA USER MANUAL F. LISP COMMANDS

Parameter Default Type Notes

:DEBTOR casa.agentCom.-
URLDescriptor

The debtor.

:CREDITOR casa.agentCom.-
URLDescriptor

The creditor.

:PERFORMATIVE java.lang.String The performative.
:ACT casa.Act The act.

F.140 SCDESCRIPTOR

SCDESCRIPTOR is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR SCDESCRIPTOR>.

Lambda list

(&KEY PERFORMATIVE ACT &ALLOW-OTHER-KEYS)

Function documentation

Return a new SocialCommitmentDescriptor that matches fields according the the keys and values. Defined in
class class casa.socialcommitments.SocialCommitmentDescriptor.
Parameter Default Type Notes

:PERFORMATIVE java.lang.String The performative.
:ACT casa.Act The act.

F.141 SCOM

SCOM is a synonym for AGENT.SHOW-COMMITMENTS (Section F.41).

F.142 SCONV

SCONV is a synonym for AGENT.SHOW-CONVERSATIONS (Section F.42).

F.143 SEQ

SEQ is a synonym for AGENT.SHOW-EVENT-QUEUE (Section F.43).

F.144 SERIALIZE

SERIALIZE is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR SERIALIZE>.

Lambda list

(OBJECT)

July 21, 2014 Knowledge Science Group, University of Calgary 101 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Returns the casa serialization string for the object. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

OBJECT The object to serialize.

F.145 SET-DEFAULT-ONTOLOGY

SET-DEFAULT-ONTOLOGY is a synonym for ONT.SET-DEFAULT (Section F.114).

F.146 SET-SYSTEM

SET-SYSTEM is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR SET-SYSTEM>.

Lambda list

(PROPERTY VALUE)

Function documentation

Set the string value of a system property. Defined in class class casa.TransientAgent.
Parameter Default Type Notes

PROPERTY string name of the system property to change
VALUE the new value of the property

F.147 SHOULDDOEXECUTEREQUEST

SHOULDDOEXECUTEREQUEST is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR SHOULDDOEXECUTEREQUEST>.

Lambda list

(MESSAGE)

Function documentation

Function’s help is undefined. Defined in class class java.lang.reflect.Method.
Parameter Default Type Notes

MESSAGE casa.MLMessage The message to decide to execute or not.

F.148 SLEEP-IGNORING-INTERRUPTS

SLEEP-IGNORING-INTERRUPTS is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR SLEEP-IGNORING-INTERRUPTS>.

Lambda list

(&optional SECONDS)

July 21, 2014 Knowledge Science Group, University of Calgary 102 of 108

CASA USER MANUAL F. LISP COMMANDS

Function documentation

Similar to the lisp (sleep [seconds]) operator, but will ingore itnerrupts. Defined in class class casa.abcl.Lisp.
Parameter Default Type Notes

SECONDS optional java.lang.Integer The number of seconds to wait.

F.149 SOCIALCOMMITMENT

SOCIALCOMMITMENT is an external symbol in the COMMON-LISP-USER package. Its function binding
is #<SPECIAL-OPERATOR SOCIALCOMMITMENT>.

Lambda list

(&KEY (DEBTOR NIL) (CREDITOR NIL) (PERFORMATIVE NIL) (ACT NIL) (EVENT NIL) (ACTION
NIL) (EVENTS NIL) The events associated with this commitment (may be mil)!)

Function documentation

Create and return a new social commitment. Defined in class class casa.socialcommitments.SocialCommitment.
Parameter Default Type Notes

:DEBTOR def=NIL casa.agentCom.-
URLDescriptor

The deptor

:CREDITOR def=NIL casa.agentCom.-
URLDescriptor

The creditor

:PERFORMATIVE def=NIL java.lang.String The performative of this commitment
:ACT def=NIL casa.Act The act of this commitment
:EVENT def=NIL casa.event.Event The originating event of this commitemnt
:ACTION def=NIL casa.-

socialcommitments.-
Action

The aciton that this commitment embodies

:EVENTS def=NIL org.armedbear.-
lisp.Cons

F.150 SUBSCRIBE-CONVERSATION

SUBSCRIBE-CONVERSATION is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR SUBSCRIBE-CONVERSATION>.

Lambda list

(NAME TO EXPRESSION &KEY SAY)

Function documentation

Declares and instantiates a subscribe conversation. Defined in class class casa.conversation2.SubscribeClientConversation.

July 21, 2014 Knowledge Science Group, University of Calgary 103 of 108

CASA USER MANUAL F. LISP COMMANDS

Parameter Default Type Notes

NAME java.lang.String The name of the conversation.
TO java.lang.String A Cons list of Lisp functions describing sub-conversations or

policies.
EXPRESSION java.lang.String A Cons list of pairs of symbol/values pairs (themselves Cons

lists) that will be bound in the context of the conversation.
The expressions are evaluated at the time the conversation
is created.

:SAY java.lang.String Message to print as a warning message when the event
occurs.

F.151 TOSTRING

TOSTRING is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR TOSTRING>.

Lambda list

(OBJECT &KEY PRETTY)

Function documentation

prints a java object through it’s toString() method. Defined in class class casa.abcl.Lisp.
Parameter Default Type Notes

OBJECT The object to convert to a String.
:PRETTY java.lang.Boolean Call toString(true) instead of toString() for MLMessage’s.

F.152 TRANSFORM-STRING

TRANSFORM-STRING is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR TRANSFORM-STRING>.

Lambda list

(TRANSFORMATION STRING)

Function documentation

returns the argument string transformed in id—id—... format. Defined in class class casa.PerfActTransformation.
Parameter Default Type Notes

TRANSFORMATION casa.-
PerfActTransformation

The Transformation o perform.

STRING java.lang.String The string to translate in id—id—... format.

F.153 TRANSFORMATION

TRANSFORMATION is an external symbol in the COMMON-LISP-USER package. Its function binding is
#<SPECIAL-OPERATOR TRANSFORMATION>.

July 21, 2014 Knowledge Science Group, University of Calgary 104 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

(FROM TO)

Function documentation

Instantiates a transformation object that translates over the PERFORMATIVE/ACT of any Describable object.
Defined in class class casa.PerfActTransformation.
Parameter Default Type Notes

FROM java.lang.String The from part in id—id... form.
TO java.lang.String The to part in id—id... form.

F.154 TRANSFORMATION.GET-FROM

TRANSFORMATION.GET-FROM is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR TRANSFORMATION.GET-FROM>.

Lambda list

(TRANSFORMATION)

Function documentation

returns the FROM part of the argument TRANSFORMATION in id—id—... format. Defined in class class
casa.PerfActTransformation.
Parameter Default Type Notes

TRANSFORMATION casa.-
PerfActTransformation

The Transformation.

F.155 TRANSFORMATION.GET-TO

TRANSFORMATION.GET-TO is an external symbol in the COMMON-LISP-USER package. Its function
binding is #<SPECIAL-OPERATOR TRANSFORMATION.GET-TO>.

Lambda list

(TRANSFORMATION)

Function documentation

returns the TO part of the argument TRANSFORMATION in id—id—... format. Defined in class class
casa.PerfActTransformation.
Parameter Default Type Notes

TRANSFORMATION casa.-
PerfActTransformation

The Transformation.

F.156 UI.HISTORY

UI.HISTORY is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR UI.HISTORY>.

July 21, 2014 Knowledge Science Group, University of Calgary 105 of 108

CASA USER MANUAL F. LISP COMMANDS

Lambda list

(&OPTIONAL INDEX &KEY MAX)

Function documentation

no param: show a command history list; param: access an element. Defined in class class casa.ui.ObservingAgentUI.
Parameter Default Type Notes

INDEX optional java.lang.Integer The element of the history list to execute.
:MAX java.lang.Integer The the maximum number of history elements to save.

F.157 UI.MONITOR

UI.MONITOR is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR UI.MONITOR>.

Lambda list

(&KEY EVENTS MESSAGES INFO UNKNOWN TRACE)

Function documentation

display various notification messages as they come in from the agent. Defined in class class casa.ui.ObservingAgentUI.
Parameter Default Type Notes

:EVENTS java.lang.Boolean show agent events as they come in.
:MESSAGES java.lang.Boolean show agent CASA messages as they come in.
:INFO java.lang.Boolean show information messages as they come in.
:UNKNOWN java.lang.Boolean show unknown notifications as they come in.
:TRACE java.lang.Boolean show trace messages as they come in.

F.158 URL.GET

URL.GET is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR URL.GET>.

Lambda list

(URL &KEY FILE NAME HOST DATA DIRECTORY FRAGMENT HOSTANDPORT LACPORT PATH
PORT SHORTESTNAME)

Function documentation

return the url as a string, or extract a component; up to ONE key is allowed (result is undefined if more than
one key). Defined in class class casa.agentCom.URLDescriptor.

July 21, 2014 Knowledge Science Group, University of Calgary 106 of 108

CASA USER MANUAL F. LISP COMMANDS

Parameter Default Type Notes

URL The URL as a URL object or a string.
:FILE The FILE or NAME component.
:NAME The FILE or NAME component.
:HOST The DATA component.
:DATA The DATA component.
:DIRECTORY The DIRECTORY component.
:FRAGMENT The FRAGMENT component.
:HOSTANDPORT The HOSTANDPORT component.
:LACPORT The LACPORT component.
:PATH The PATH component.
:PORT The PORT component.
:SHORTESTNAME The SHORTESTNAME component.

F.159 URLS.GET

URLS.GET is an external symbol in the COMMON-LISP-USER package. Its function binding is #<SPECIAL-
OPERATOR URLS.GET>.

Lambda list

(&KEY STRING FORMAT)

Function documentation

return a Cons list of all known URLs as Java URLDescriptors. Defined in class class casa.agentCom.URLDescriptor.
Parameter Default Type Notes

:STRING If this is non-NIL, the returned Cons list will be URL
Strings.

:FORMAT If this is non-null, the return will be a string containing the
String urls separated by newlines.

F.160 WITH-ONTOLOGY

WITH-ONTOLOGY is a synonym for ONTOLOGY (Section F.116).

Acknowledgments

The author wishes to acknowledge the Candian Nationial Science and Engineering Research Council (NSERC)
for financial support of the research.

July 21, 2014 Knowledge Science Group, University of Calgary 107 of 108

Bibliography

[Americal National Standards Institute (ANSI), 2004] Americal National Standards Institute (ANSI) (2004).
Lisp Programming Language - ANSI standard document ANSI INCITS 226-1994 (R2004), (formerly X3.226-
1994 (R1999)).

[Bellifemine et al., 2007] Bellifemine, F., Caire, G. and Greenwood, D. (2007). Developing multi-agent systems
with JADE. Wiley series in agent technology, John Wiley.

[Bellifemine et al., 2003] Bellifemine, F., Caire, G., Poggi, A. and Rimassa, G. (2003). JADE: A White Paper.
Technical Report Volume 3, n. 3 Telecom Italia Lab Italy. Available: http://jade.cselt.it/.

[Common-Lisp.net, 2011] Common-Lisp.net (2011). Armed Bear Common Lisp (ABCL) - Common Lisp on
the JVM. http://common-lisp.net/project/armedbear/.

[Evenson et al., a] Evenson, M., Hulsmann, E., Stalla, A. and Voutilainen, V. A Manual for Armed Bear
Common Lisp.

[Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series, Addison-Wesley,
Reading, Mass.

[Motik et al., 2011] Motik, B., Patel-Schneider, P. F. and Grau, B. C. (2011). OWL 2 Web Ontology Language:
Direct Semantics (Second Edition). W3c recommendation W3C. Available: http://www.w3.org/TR/owl2-
direct-semantics/.

[Motik et al., 2012] Motik, B., Patel-Schneider, P. F. and Parsia, B. (2012). OWL 2 Web Ontology Language:
Document Overview (Second Edition). W3c recommendation W3C. Available: http://www.w3.org/TR/owl2-
overview/.

[Pautret, 2006] Pautret, V. (2006). Jade Semantics Add-on Programmer’s guide.
http://jade.tilab.com/doc/tutorials/SemanticsProgrammerGuide.pdf.

[Stanford Center for Biomedical Informatics Research, 2013] Stanford Center for Biomedical Informatics Re-
search (2013). Protégé. http://protege.stanford.edu.

[Steele, 1990] Steele, G. L. (1990). Common Lisp the Language. Number ISBN 1-55558-041-6, 2nd edition
edition, Digital Press.

[Telecom Italia Lab, 2008] Telecom Italia Lab (2008). JADE (Java Agent Development Environment).
http://jade.cselt.it/.

108

	Introduction
	Basic agent structure
	Basic types of agents
	AbstractProcess
	TransientAgent
	Agent
	LAC
	CooperationDomain

	Agent activity
	Events and handling threads
	Agent initialization
	The event loop
	Exiting

	Ontology
	OWL2 Ontology
	CASA Native Ontology [Deprecated]
	CASA Ontologies

	Knowledge Base
	Messages
	Commitments
	Social commitment operators

	Policies
	Policy Specification
	Policy Execution

	Conversations
	Conversation specification

	Scripting language: Lisp
	Ontologies
	Initialization
	Custom Lisp Operators

	Observers
	User Interfaces
	The Default GUI

	Security
	Persistence
	Debugging/Logging (Trace)
	Specifying Trace Tags
	Using println()
	Turning on tracing
	Trace file format

	Adding extensions
	Code extensions
	Tab extensions
	Lisp-Script Extensions

	Appendices
	Searching for Resources
	Preference Settings
	Matching Operators (event descriptors)
	Properties, Parameters. Persistence, and Options
	Command Line Qualifiers
	Lisp Commands
	?
	A2L
	ACT
	ACT.ACTION-AT
	ACT.SIZE
	ACT2LIST
	ACT2STRING
	ADD-SINGLE-NUM-VALUE-KBFILTER
	AGENT-IDENTIFIER
	AGENT.ASYNC
	AGENT.CREATE-EVENT-OBSERVER-EVENT
	AGENT.DELETE-POLICY
	AGENT.EXIT
	AGENT.FIND-FILE-RESOURCE-PATH
	AGENT.GET-AGENT
	AGENT.GET-AGENTS-REGISTERED
	AGENT.GET-AGENTS-RUNNING
	AGENT.GET-CLASS-NAME
	AGENT.GET-POLICIES
	AGENT.GET-URL
	AGENT.GETUSEACKPROTOCOL
	AGENT.INSTANTIATE-CONVERSATION
	AGENT.ISA
	AGENT.JOIN
	AGENT.LOAD-FILE-RESOURCE
	AGENT.MAKE-CONVERSATION-ID
	AGENT.MESSAGE
	AGENT.NEW-AGENT
	AGENT.NEW-INTERFACE
	AGENT.OPTIONS
	AGENT.PAUSE
	AGENT.PING
	AGENT.PRINTLN
	AGENT.PUT-POLICY
	AGENT.REPLY
	AGENT.RESET-DEF-FILE-SYSTEM-LOCATIONS
	AGENT.RESUME
	AGENT.SEND
	AGENT.SEND-QUERY-AND-WAIT
	AGENT.SEND-REQUEST-AND-WAIT
	AGENT.SHOW-COMMITMENTS
	AGENT.SHOW-CONVERSATIONS
	AGENT.SHOW-EVENT-QUEUE
	AGENT.SHOW-EVENTQUEUE
	AGENT.STEP
	AGENT.STOP-EVENT-OBSERVER-EVENT
	AGENT.TELL
	AGENT.TRANSFORM
	AGENT.TRANSFORM-STRING
	CALL-GC
	COMPARETO
	CONSEQUENT-CLASS
	CONSTRAINT
	CONVERSATION
	CONVERSATION.EXECUTE-ACTION
	CONVERSATION.GET-STATE
	CONVERSATION.SET-ACTION
	CONVERSATION.SET-STATE
	DECLINDIVIDUAL
	DECLMAPLET
	DECLONTOLOGY
	DECLRELATION
	DECLTYPE
	ECHO
	EVENT-DESCRIPTOR
	EVENT.GET
	EVENT.GET-MSG
	EVENT.GET-MSG-OBJ
	EVENT.GET-OWNER-CONVERSATION-ID
	FIPA-FOLLOWS
	FIPA-PRECEEDS
	FIRE-EVENT
	GET-HOST-NAMES
	GET-INETADDRESSES
	GET-OBJECT
	GET-ONTOLOGY
	GET-RESIDENT-ONTOLOGIES
	GET-SYSTEM
	GET-THREAD
	GETONTOLOGY
	GETONTOLOGYENGINE
	HASCONVERSATION
	HELP
	instance-of
	isa
	isa-ancestor
	isa-child
	isa-descendant
	isa-parent
	isequal
	ISPARENT
	KB.ARG-DESC
	KB.ASSERT
	KB.DEFINE-ONT-FILTER
	KB.GET-VALUE
	KB.QUERY-IF
	KB.QUERY-REF
	KB.SHOW
	LOAD-FILE-RESOURCE
	LOAD-JAR
	MSGEVENT-DESCRIPTOR
	NEW-URL
	ONT.ASSERT
	ONT.DESCRIBE
	ONT.GET
	ONT.GET-RESIDENT
	ONT.IMPORT
	ONT.INDIVIDUAL
	ONT.IS-INDIVIDUAL
	ONT.IS-OBJECT
	ONT.IS-TYPE
	ONT.RELATED-TO
	ONT.RELATION
	ONT.SET-DEFAULT
	ONT.TYPE
	ONTOLOGY
	PERFORMDESCRIPTOR
	PERFORMDESCRIPTOR.GET-STATUS
	PERFORMDESCRIPTOR.GET-STATUS-VALUE
	PERFORMDESCRIPTOR.GET-VALUE
	PERFORMDESCRIPTOR.OVERLAY
	PING
	POLICY
	PRIMITIVEONTOLOGY.INSTANCE-OF
	PRIMITIVEONTOLOGY.ISA
	PRIMITIVEONTOLOGY.ISA-ANCESTOR
	PRIMITIVEONTOLOGY.ISA-CHILD
	PRIMITIVEONTOLOGY.ISA-DESCENDANT
	PRIMITIVEONTOLOGY.ISA-PARENT
	PRIMITIVEONTOLOGY.ISEQUAL
	PRIMITIVEONTOLOGY.PROPER-INSTANCE-OF
	proper-instance-of
	QUERY-REF
	QUERYREF
	QUERYW
	REQUESTW
	SC.ADD
	SC.CANCEL
	SC.FULFIL
	SCDESCRIPTOR
	SCOM
	SCONV
	SEQ
	SERIALIZE
	SET-DEFAULT-ONTOLOGY
	SET-SYSTEM
	SHOULDDOEXECUTEREQUEST
	SLEEP-IGNORING-INTERRUPTS
	SOCIALCOMMITMENT
	SUBSCRIBE-CONVERSATION
	TOSTRING
	TRANSFORM-STRING
	TRANSFORMATION
	TRANSFORMATION.GET-FROM
	TRANSFORMATION.GET-TO
	UI.HISTORY
	UI.MONITOR
	URL.GET
	URLS.GET
	WITH-ONTOLOGY

